
Relational Interpretations of Recursive Types in an
Operational Setting

Lars Birkedal Robert Harper

April 24, 1998

CMU-CS-98-125

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Submitted for publication to Information and Computation. A sum-

mary of this paper appeared in TACS '97.

This research was supported in part by the Isaac Newton Institute for Mathematical
Sciences at Cambridge University. Robert Harper is supported by the National Science
Foundation under Grant No. CCR-95-2674. Lars Birkedal is supported in part by the
Danish National Research Council and in part by the National Science Foundation under
Grant No. CCR-9409997.

WIG QXJALTFFIHSPECJTED $

"STATEBffiNTX
Approved for public release;"

Distribution Unlimited

Keywords: Type theory, operational semantics, logical relations, equa-
tional logics, compiler correctness, continuations.

Abstract

Relational interpretations of type systems are useful for establishing prop-
erties of programming languages. For languages with recursive types it
is usually difficult to establish the existence of a relational interpretation.
The usual approach is to give a denotational semantics of the language in
a domain-theoretic model given by an inverse limit construction, and to
construct relations over the model by a similar inverse limit construction.
However, in passing to a denotational semantics we incur the obligation to
prove its adequacy with respect to the operational semantics of the lan-
guage, which is itself often proved using a relational interpretation of types!
In this paper we investigate the construction of relational interpretations
of recursive types in a purely operational setting, drawing on recent ideas
from domain theory and operational semantics as a guide. We establish a
syntactic minimal invariance property for an ML-like language with a recur-
sive type that is a syntactic analogue of Freyd's universal characterization
of the canonical solution of a domain equation. As Pitts has shown in the
setting of domans, minimal invariance suffices to establish the existence of
relational interpretations of recursive types. We give two applications of
this construction. First, we derive a notion of logical equivalence for expres-
sions of the language that we show coincides with contextual equivalence
and which, by virtue of its construction, validates useful induction and coin-
duction principles for reasoning about the recursive type. Second, we give
a relational proof of correctness of the continuation-passing transformation,
which is used in some compilers for functional languages. The proof relies on
the construction of a family of simulation relations whose existence follows
from syntactic minimal invariance.

1 Introduction

The interpretation of types by relations is a fundamental technique in the
study of type systems (see, for example, Mitchell's survey [14] and mono-
graph [15] for examples and references to the literature). The general idea
is to associate to each type a relation over a suitable value space in such a
way that well-typed terms are related appropriately by the interpretation.
In many cases the existence of a relational interpretation is established by
induction on the structure of types, but in more complex languages with
impredicative polymorphism or (not necessarily positive) recursive types,
more sophisticated methods are required.

In the case of impredicative polymorphism the method of candidates
introduced by Girard [8] may be used to construct a relational interpretation.
For recursive types the usual approach is to pass to a domain-theoretic
model of the language and to exploit the structure of the model to build the
required system of relations. In practice the model (such as Scott's D^)
is obtained as the inverse limit of a system of domains, and the required
relational interpretation is obtained by exploiting the structure of the model
arising from this construction.

The denotational approach has been successfully used for a number
of problems, including Reynolds' proof of correctness of the continuation-
passing transformation used in some compilers for functional languages [20].
A disadvantage of this approach is that one must also prove the correctness
(adequacy) of the denotational semantics of the language, which is itself of-
ten established using a relational interpretation of types [19, 17]! Moreover,
since the construction is carried out for a specific model of the language, it
is not clear a priori to what extent the specific model affects the result.

The latter question was recently addressed by Pitts [17] who showed that
Freyd's universal characterization of the solution of a domain equation by the
minimal invariant property [6, 5, 7] is sufficient to validate the construction
of a wide class of relational interpretations of recursive types. The starting
point for the present work is the observation that for a sufficiently rich lan-
guage with recursive functions and recursive types the minimal invariance
property of the model is expressible entirely in terms of the language itself
by an equation stating that a particular recursively-defined function is de-
notationally equivalent to the identity function on the recursive type. This
opens the door to the construction of relational interpretations without the
passage to a denotational semantics. The key is to establish the minimal
invariance property up to contextual, rather than denotational, equivalence.
With this syntactic minimal invariance property in hand we may exploit

Pitts's results to construct relational interpretations over contextual equiv-
alence classes of expressions entirely at the level of the language itself.

Since contextual equivalence is a congruence, it induces a compositional
interpretation that may be seen as a form of denotational semantics, albeit
one that is adequate by construction. This suggests that our approach may
be seen as a particular instance of the standard construction. However,
as Mason, Smith, and Talcott have shown [11], the interpretation induced
by taking contextual equivalence classes does not yield a domain in the
conventional sense since, for example, not all chains have least upper bounds.
Thus the operational approach to interpreting recursive types as relations
differs fundamentally from the denotational method.

We study the construction of relational interpretations for an ML-like
language, £, with recursive functions and one recursive type. The opera-
tional semantics of the language specifies a call-by-value, or "eager", eval-
uation strategy, as in Standard ML [13]. We make no restrictions on the
occurrence of the recursively-defined type in its definition — both positive
and negative occurrences are permitted.

The proof of syntactic minimal invariance for £ relies on a characteriza-
tion of contextual equivalence given by Mason, Smith, and Talcott [11],
called experimental equivalence. The primary interest in this notion of
equivalence is that it coincides with contextual equivalence and supports
a relatively straightforward proof of syntactic minimal invariance. Other,
equivalent, characterizations are also available, but these do not appear to
significantly simplify the argument.

We give two examples of the use of relational interpretations to analyze
properties of the language £. First, we derive another characterization of
contextual equivalence, called logical equivalence, that validates induction
and coinduction principles for reasoning about values of the recursive type.
We illustrate the use of logical equivalence with two small examples based
on similar examples given by Pitts [16]. Second, we give a relational proof
of correctness of the continuation-passing (cps) transform introduced by
Fischer [4] and Plotkin [18] and studied by Reynolds [20]. The proof relies
on the construction of a relational interpretation of £ that establishes a
correspondence between the evaluation of a program and its continuation-
passing transform. This generalizes Reynolds' result [20] to the case of a
typed language with an arbitrary recursive type, while avoiding the need to
consider a denotational semantics for £.

This paper is organized as follows. In Section 2 we define the syntax of
the language £, define the operational semantics and show some standard

typing properties, including type soundness. Then in Section 3 we define
the notion of experimental equivalence, with which we shall be working in
the remainder of the paper. The main result of this section is the proof
of syntactic minimal invariance based on a technique introduced by Mason,
Talcott, and Smith [11]. In Section 4 we define a universe of admissible
relations over contextual equivalence classes of closed expressions. We also
define relational operators corresponding to the type constructors of the lan-
guage and show that they preserve admissibility. The relational constructors
are used in Section 5 where we construct a relational interpretation of types
using the method described above. In Section 6 we show how to use our
method to give a relational interpretation which coincides with contextual
equivalence. In Section 7 we apply the method to give a proof of correctness
of the cps transformation. Finally, in Section 8 we discuss related work, and
in Section 9 we conclude.

2 The Language

The language, £, is a simply-typed fragment of ML with one top-level re-
cursive type. We let x and / range over a set Var of program variables. The
syntax of the language is given by the following grammar:

Types T ::= 0 | 1 | p | T\ + r2 | T\ X T2 | T\ -*■ r2

Expressions e ::= v | in e | out e | inlT e | inrT e | case(ei, e2,63) |
(ei, e2) I fst e I snd e | e\ e2

Values v ::= * | in v | inlT v | inrT v \
(vi,v2) I fix/(x:r).e

Evaluation E ::= _ | in E | out E | inlT E | inrr E \ case(E,e,e') \
Contexts (E, e) \ (v, E) \ fst E \ snd E \ E e \ v E

The C raw terms are given by the syntax trees generated by the grammar
above, with e as start symbol, modulo a-equivalence, as usual. Alpha-
equivalence is denoted =a. Observe that p is a type constant. Distinguish
a fixed type expression TP, the intuition being that p is a recursive type
isomorphic to rp; in and out are used to mediate the isomorphism.

A finite map is a map with finite domain. We use 0 to denote the map
whose domain is the empty set. The domain and range of a finite map / are
denoted Dom(/) and Rng(/), respectively. When / and g are finite maps,
/ + g is the finite map whose domain is Dom(/) U Dom(^) and whose value
is g(x), if x & Dom(g), and f(x) otherwise, f i A means the restriction
of / to ^4, and f \ A means / restricted to the complement of A. We use

[x\ : yi,... ,xn : yn] to denote the finite map which maps xi to j/j, for all
1 <i <n.

We denote the set of all types by Type. A typing context is a finite
map from variables to types; we use T to range over typing contexts. If
x 0 Dom(r), then T[x : r] denotes the typing context V + [x : T]. A typing
judgment has the form T \- e : T. The typing rules are given in Figure 1. We
write h e : r for 0 h e : r. The C terms is the set of raw terms e for which
there exists, for each e, a typing context V and a type r such that Their.

Note that, even though there is no explicit introduction rule for the type
0, there are terms of this type, for instance (fix f(x:l).fx) *.

The set of expressions of type r with free variables given types by F,
denoted ExpT(T) is defined as follows.

Expr(r)
d={e | Their}

Further define
ExpT

d= ExpT(0)

Likewise, we define sets for values as follows.

ValT(r) d= {v | Thv.r}

and
ValT

d=ValT(0)

Substitution of an expression e' for free occurrences of x in e is written
[e'/x]e. The parallel substution of ei, ...en for xi, ..., xn in e is written
[ei,..., en/xi,...,xn]e. We let FV(e) denote the set of free variables in e.
We use Xx:T.e as an abbreviation for fix f(x:r).e where / is some variable
satisfying / 0 FV(e).

2.1 Contexts

The C contexts, ranged over by C, are the syntax tree generated by the
grammar for e augmented by the clause

C ::= ---Ip

where p ranges over some fixed set of parameters. Note that the syntax
trees of £ terms are contexts, namely the ones with no occurrence of param-
eters. [C/p]C denotes the context obtained from context C" by replacing
all occurrences of p in C with C. This may involve capture of variables.

r h x : T (F{x) = T)

Th*: 1

r h ei : T\ T h e2 : T2

rh(ei,e2): : T\ X T2

r h e : n X T2

r H fst e : n

T h e : Ti X T2

T h snd e : r2

The: Tl

T h inlT2 e : n + r2

The: 7"2

r h inrTl e : ri + T2

r I- ei : TI + T2 T h e2 : n —^ r r h e3 : T2 -1 T

T h case(ei,e2,e3) : r

r[/ : n -^ T2][X : n] I- e : T2

T h fix f(x:T\).e : T\ -± T2

r h ei : T2 —*■ T T h e2 : T2

T h ei e2 : T

rhe:p

(/,a:0Dom(r))

T h out e : T„

Fhe-.Tp

T h in e : p

(T-VAR)

(T-ONE)

(T-PROD)

(T-FST)

(T-SND)

(T-INL)

(T-INR)

(T-CASE)

(T-FIX)

(T-APP)

(T-OUT)

(T-IN)

Figure 1: Typing Rules

Lemma 2.1 If Ci =a C2 then [d/p]C' =a [C2/p]C.

Proof By induction on C. □

By Lemma 2.1, the operation of substituting for a parameter in a context
induces a well-defined operation on «-equivalence classes of L contexts.

Notation 2.2 Most of the time we will only use contexts involving a single
parameter which we will write as _. We write C{-} to indicate that C is
a context containing no parameters other than _ (note that it may contain
no parameters at all). If e is an C term, then C{e] denotes the raw term
resulting from choosing a representative syntax tree for e, substituting it
for the parameter in c and forming the a-equivalence class of the resulting
C syntax tree (which by the remarks above is independent of the choice of
representative for e).

2.2 Typed Contexts

We will assume given a function that assigns types to parameters. We write
_T to indicate that a parameter _ has type r.

The relation T h C : r is inductively generated by axioms and rules
just like those defining Their together with the following axiom for
parameters.

T h _T : r (T-PAR)

The set of contexts of type r with free variables given types by T, denoted
Ctxr(r) is defined as follows.

ctxT(r)d= {c | Fhc-.r}

Ctxr=
f Ctxr(0)

2.3 Evaluation

The operational semantics will be given by term rewriting and will be defined
for all closed terms (not only those of ground type).

The set of evaluation contexts are the syntax trees generated by the
grammar for E. Note that this is clearly a subset of the set of contexts
(with parameters including _). Hence we shall use the notation associated
with contexts for evaluation contexts also. In addition, we define

ECtxr(r)
d= {E I T\-E:T}

and
ECtxr =fECtxT(0)

Note that evaluation contexts are not capturing. Hence we have the follow-
ing lemma.

Lemma 2.3 For alle € ExpT and for allE{.T} € ECtxr<, E{e} = [e/x]E{x}

Proof By induction on E. D

Redices are generated by the following grammar.

Redices r ::= (fix f(x:r).e) v | fst (v\,V2) | snd (^1,^2) |
out (in v) I case(inlT w,ei,e2) | case(inrT v,e\,e2)

Note that the set of redices is a subset of the set of expressions. We define

and

RexpT(r) -f {r I Thr :T}

Rexpr = Rexpr(0)

Lemma 2.4 For all e € ExpT\ ValT, there exists a unique pair of evaluation
context, E, and redex, r, such that e = E{r}.

Proof By induction on e. D

The reduction rules for redices are as follows.

(fix f(x:r).e) v ~+ [fix f(x:r).e, v/f, x]e (R-BETA)

fst (-01,^2) ~* v\ (R-FST)

Snd (;Ul,U2) "** V2 (R-SND)

out (in v) -w v (R-OUT)

case(inlT v,e\,ei) ~* e\v (R-CASE-INL)

case(inrT w,ei,e2) ~^ e2V (R-CASE-INR)

Further, we define, for closed expressions e and e', e 1-4 e' if and only if
e = E{r} and e' = E{e\] and r ~~> e\.

Definition 2.5 The reflexive and transitive closure of *-t is denoted t-t*.
For n > 0, we define e ^n e' iff e = eo >->• e\ i->- ■ ■ ■ en-\ H* en = e'.
Further, we write e ff iff whenever e i->* e1, there exists an e" such that
e' >-> e". Finally, we write e § iff there exists a v such that e i->* v.

Note that evaluation is only defined for closed expressions and that during
evaluation we will only ever substitute closed values for variables.

Lemma 2.6 (Evaluation is deterministic) If e \-¥ e' and e H* e", then
e' = e".

Proof Follows by Lemma 2.4. □

Lemma 2.7 1. For all r and all v G ValT: v JJ-.

2. For all e G ExpT, if e ^ e', then e G ExpT \ ValT.

Lemma 2.8 For all E{-n} G ECtxT2, and for all e G Expn \ ValT1, if
E{e] f-> E{e'}, then there exists £a{-r3} G ECtxn and r G RexpT3 and
ei G ExpT3 such that e = Ei{r} and e' = Ei{ei} and r ^ e\.

Lemma 2.9 1. If r[i:r]he: r' and Y \- e' : r, then Y h [e'/x]e : T'.

2. If h E{e} : r then there exists a re such that h e : re and h E{e'} : r
for all e' such that h e' : re.

Theorem 2.10 (Preservation)

// e H-> e' and he:r, then h e' : r.

Proof By the definition of the evaluation relation and Lemma 2.9. D

Lemma 2.11 (Canonical Forms) Suppose that h v : r. Then

• If T = 1, then v = *.

• If T = p, then v = \nv' for some v' G Va/T/:,.

• IfT = T\+T<2, then either v = inlT2 v' for some v' G ValTl orv = inrTl v'
for some v' G ValT2.

• If T = TI x T2, then v — (1*1,^2) for some v\ G ValT1 and some «2 G
ValT2.

• If T = T\ -^ T2, then v = fix f(x:T\).e for some variables f and x, and
some e G ExpT2([f :TI-

X
T2,X: TI]).

Proof By inspection of the typing rules and the definition of closed val-
ues. D

Theorem 2.12 (Progress) // h e : r, then either e is a value or there
exists an e' such that ei->e'.

Proof By induction on h e : r. D

Lemma 2.13 (Uniformity of Evaluation) For all e G ExpTl \ ValTl and
for all E{.n} G ECtxT2, if E{e} n-> E{e'}, then V£'{_Tl} e ECtxT2 :
E'{e} ^ E'{e'}.

Proof By the definition of the evaluation relation e4e' and the definition
of the reduction rules. D

Lemma 2.14 For all e,e' G ExpT \ ValTl and for all E{-r} G ECtxTi, if
E{e} H-^ E{e'}, then also e i-> e'.

Lemma 2.15 If e G ExpT and e ft, then VE{..T} G ECtxT> : E{e} f|\

3 Experimental Equivalence

For closed expressions of base type 1, we define a notion of Kleene approxi-
mation and Kleene equivalence as follows.

Definition 3.1 (Kleene Approximation and Equivalence) For alle,e' G
Exp1, we define e -<k e' iff e 1-4* * =>• e' >-¥* * and e &k e' iff e i->* * 4=>
e' i-V *.

For closed expressions we define notions of experimental approximation and
experimental equivalence as follows.

Definition 3.2 (Experimental Approximation and Equivalence) For
all e,e' G ExpT, we define

\-e±e' :T <S=» V£{_T} G ECtxx : E{e\ ^k E{e'}
h e « e' : r «=► V£{-r} G ECtxi : E{e} «fc £{e'}

Lemma 3.3 hesie':T <*=> (h e ^ e' : T A H e' r< e : r)

Notation 3.4 When r is clear from context we write e ■< e' for h e < e1 : r
anrf e « e' /or h e K e' : r.

We now establish some basic properties of experimental equivalence and
evaluation.

Lemma 3.5 If h ei « e2 : r i/ien ei JJ- i/f e2 JJ-.

Lemma 3.6 For a// e £ FxpTl and /or a?/ #{-n} e ECtxT,
\-E{e}^(Xx:T.E{x})e:T.

Lemma 3.7 (H^C«) For aW e,e' £ FzpT, i/e ^ e', then he«e':T.

Lemma 3.8 Experimental equivalence, w, is an equivalence relation. That
is, the following three properties hold.

1. If h e\ « e2 : T and h e2 « e3 : T, £/«en h ei « e3 : r.

#. 7/ e G Fa;pT, £/ien he«e:r.

3. If h e\ « e2 : T, i/ien h e2 « ei : T.

Lemma 3.9

1. //he« (ei, e2) : TJ x T2 tfien e JJ- i/f ei JJ and e2 JJ-.

2. If h e « (ei, e2) : n x r2 and h ei « e^ : T\ and h e2 « e'2 : r2; i/jen
he« (e'^e^) : n x r2.

3. If he« (ei,e2) : T\ X T2 and e JJ-, £/ien h fst e « ei : n and
h snd e « e2 : r2.

Lemma 3.10

i. 7/ h e « inlT2 e' : Ti + r2 tfaen e JJ i/f e' 4- 7/ he« inrT1 e' : n + r2,
i/ien e JJ «// e' JJ-.

£ 7/ he« inlT2 e' : T\ + T2 and he'« e" : n, then he« inlT2 e" :
T\ + T2. 7/ he« inrTl e' : T\ + T2 ana" he'« e" : r2, #ien he«
inrri e" : Ti +T2.

5. 7/ h e « inlT2 e' : Ti + r2 and e JJ., i/ten f/jere exists a v' such that
he« inlT2 v' : rx + r2 ana1 h e' « v' : T\. If he« inrTl e' : n + r2

and e JJ-, then there exists a v' such that h e « inrri v' : r\ + r2 and
he'««': r2.

10

4- f- inlT2 e m inlT2 e' : T\ + T2 iff \~ e & e' : TI. h inrTl e « inrTl e' :
n + n iff \~ e sa e' : r2.

Lemma 3.11

i. // h e « in e' : p, then e -IJ- iff e' JJ-.

2. If h e sa in e' : p and e' ft £/ien e ff-

3. If h e « in e' : p and he's e" : Tp; £/*en h e « in e" : p.

^. h in e ss in e' : p ijff h e sa e' : TP.

We shall now prove a somewhat technical lemma to the effect (Corol-
lary 3.13) that we can restrict the set of evaluation contexts to consider
when proving h e ■< e' : r. It turns out that we can restrict attention to the
evaluation contexts for which the hole occurs in an atomic testing context.

The atomic testing contexts, ranged over by T are the syntax tree gen-
erated by the following grammar

T ::— -1 I out -p | case(_Tl+T2, e±, e^) | fst _riXT2 | snd ^XT2 | -r1^T2 v

We define
TCtxr(r)=

f {T I F\-T:T}

and
TCtxT =f TCtxr(0)

We shall be a little more pedantic than elsewhere in the following lemma
as it is a little delicate.

Lemma 3.12 Vn G N : Vr 6 Type : Vu, v' G ValT : if

W G Type : V£{_T>} G ECtxx : VTj^} € TCtxT, : £{T»} ^fc E{T{v'}}

(1)

Vr' € Type : to G Var : Ve G £kpr,([2 : T]) : V£{_T/} G £C7tei([;s : T]) :
([«/*](£{«}) H>» *) =► ([t//z](E{e}) ^ *)

(2)

Proof By induction on n.
Basis (n = 0): Let r G Type and u,t/ G ValT be arbitrary. As-

sume (1). We are to show (2) with 0 substituted for n. Let T' G Type,
z G Var, e G ExpT/([z : r]), and Ü?{-T'} G ECtxi([z : r]) be arbitrary. As-
sume [v/2;](jB{e}) i->-0 *. Then [v/z](E{e}) = *. Thus there are two cases
to consider.

11

1. T' = 1, E = _i, and e = *

2. r' = 1, E = _i, e = z, r = 1, and v = *

SubCase 1: Then also [v'/z](.E{e}) = * and hence [v'/z](E{e}) ^* *, as
required.

SubCase 2: By assumption (1) with r' = r, £^{-T'} = -r, and T{_T} = _i,
we have that (v i->* *) => (?/ >-»•* *). As v = *, indeed (v !->■* *), whence we
can conclude that v' !->•* *. Thus v' = * and hence also [«'/^(^{e}) = *, so
[v'/z](E{e}) i-)-* *, as required.

Inductive Step: We assume that the lemma holds for n > 0 and show
for n + 1. Let r G Type and v,v' G Valr be arbitrary. Assume (1).
We are to show (2) with (n + 1) substituted for n. Let r' G Type, 2; G
Var, e e ExpT/([2; : r]), and £{-T'} G ECtxi([2 : r]) be arbitrary. Assume
[v/z](i£{e}) i-)-n+1 *. Since there is at least one reduction step, we can
proceed by cases on the first reduction step.

Case R-BETA: Then there are two cases

1. r = n -»■ T2 and E{e} = E'{zvi} for some £'{-T2} G ECtxi([s : T])

and some vi G ValTl ([z : r])

2. 25{e} = £"{fix /(a;:ri).e0 «i} for some E'{„T2} G ECtxi([z : r]), some
^i G ValTl([2; : rj), and some fix f(x:Ti).eo G ValTl^r2([z : T])

SubCase 1: Then u is of the form fix /(a;:Ti).eo. Thus

[v/z](E{e}) = K^'^})

= [u/*](^{(fix/(a;:Ti).eo)i;i})

^ [«/*](£'{[«, wi//,s]e0}) (3)
H->n * (4)

Now by the induction hypothesis we have (with r = r, v = u and v' = u'
and noting that (1) holds by assumption) that

W G Type : Vz G Var : Ve G Expr,([z : r]) : V£{_T,} G ECtxi([;s : r]) :
([«/^(^{e}) ^" *) => ({v'/z](E{e}) ^* *)

(5)
Letting r' = T2, z = z, e = [v,vi/f,x]eo, and E{-T'} = E'{-T2} in (5) and
using (3) and (4), we conclude that

[v'/z]E'{[v,vi/f,x]eo}^** (6)

12

By (6) and recalling that v = fix f(x:ri).eo we get that

[v'/z}E'{vVl} H. [v'/z]E'{[v,v1/f,x]e0} ^* * (7)

By assumption (1) on (7) with r' = r2, E{-T>} = [v/z](E'{-T2}) G ECtxi,
and T{_T} = _r {[v/z]vi) G TCtxT2 we get

[v'/z]E'{v'v1}»** (8)

Hence, as [v'/z]E{e} = [v'/z]E'{v'vi}, we have the required by (8).
Sub Case 2: Then

\v/z\(E{e}) = [<;/*](£'{fix /(a::r1).eoüi})

H+ [«/«](^{[fix/(a;:Ti).eo,v1//,a;]eo}) (9)

^" * (10)

Now by the induction hypothesis we have (with T = T, v = v and v' = v'
and noting that (1) holds by assumption) that

W G Type : Mz G Var : Ve G ExpT,([;z : r]) : V£{_T/} G ECtxi([z : r]) :
({v/z](E{e}) ->« *) => ([v'/z](E{e}) ^* *)

(11)
Letting T

1
 = T2, z = z, e = [fix /(a::7i).eo,vi//,a;]eo, and -E{-T'} = #'{-T2}

in (5) and using (9) and (10), we conclude that

[v'/z](E'{[i\x f(x:T1).e0,v1/f,x]e0}) H+* * (12)

We have that

[v'/z](E{e}) = [v'/z]{E'{(r,xf(x:T1).e0)v1}) (13)

^ [v'/z}(E'{[i\xf(x:T1).e0,v1/f,x}e0}) (14)

Hence, combining (12) and (13) and (14), we have that

[v'/z](E{e}) ^* *

as required.
Case R-OUT, R-CASE-INL, R-CASE-INR, R-FST, or R-SND: The proof for

each of these cases proceeds analogously to the previous case, with two sub-
cases for each case, and using the corresponding atomic testing contexts. D

13

Corollary 3.13 Vr G Type : Vu,u' e ValT : if

Vr' € Type : V£{_T>} G £Cfcci : VT{_T} G T(7fcv : £{T{u}} r<fe E{T{v'}}
(15)

I- v ^ w' : r

Proof Let r G Type, and v,v' G ValT be arbitrary. Assume (15). Let
E{-T} G ECtxi be arbitrary. We are to show that

E{v} H>* * =» £{u'} ^* * (16)

Prom our assumption (15) we get by Lemma 3.12

Vr' G Type : Vz G Var : Ve G ExpT,([z : r]) : V£{_T>} G ECtxi([z : r]) :
([v/z](E{e}) ^* *) => ([v'/z](E{e}) ^ *)

(17)
Letting r' -r,e = z and #{-T'} = E{.r) in (17), we get (16), as required. D

The next corollary is an immediate consequence of Corollary 3.13 and is
the formulation which we will often make use of in the following.

Corollary 3.14

1. To show \- v < v' : T\ -^ T2, it suffices to show

V£{_T1^T2 vi} G ECtxx : E{v} ±k E{v'}

2. To show h v ;< v' : T\ XT2, it suffices to show

V£{fst -nxrj G ECtxi : E{v} <k E{v'}

and
V£{snd _TIXT2} € ECtxi : E{v} d? E{v'}

3. To show \- v ^ v' : Ti + T2, it suffices to show

Vß{case(_T1+T2,ei,e2)} G ECtxx : E{v} dk E{v'}

4- To show \- v <v' : p, it suffices to show

V£{out _„} G ECtxx : E{v} ^k E{v'}

Proof Follows by Corollary 3.13 and the definition of atomic contexts. D

14

3.1 Compactness of Evaluation

In this section we show that a fix-term is approximated, in the experimental
approximation pre-order, by its finite unrollings. Further, we show that to
fill a context is a monotone operation with respect to the experimental pre-
order and we use this to show that a fix-term is the least upper bound of
its finite unrollings. These properties are also referred to as compactness of
evaluation. Finally, we show that to fill a context is a continous operation
with respect to the approximation pre-order. We shall only be concerned
with closed fix-terms, as this suffices for our purposes.

Our development of compactness of evaluation follows the approach of
Pitts [16, Section 5] quite closely but there are some technical differences due
to the fact that we use a reduction semantics rather than a natural semantics
as employed by Pitts. We have chosen this formulation, using cofinal sets,
because it fits nicely with our formulation of admissible relations, for which
a formulation based on cofinal sets suffices (see Section 4).

Throughout this section we shall consider a particular fixed term F =
fix f(x:T\).e satisfying F € ExpTl^T2, and use the following abbreviations:

F0 = fix/°(a;:Ti).e = fix/(X:TI)./S

Fn+l
dM fix/n+1(a;:ri).ed^Ax:ri.[Fn//]e

Fu *£ F

Note that we here simply define some abbreviations of expressions already in
the language. This is opposed to introducing new labelled expressions and
new notions of reduction for labelled expressions as, e.g., done by Gunter [9].

We will only consider contexts involving parameters of type T\ -
A
 r2.

We write C{p} for such a context whose parameters are included in the list
p (note that we do not required that all the parameters in p occur in C).
Given an fc-tuple n — (ni,..., n*) of natural numbers, then we make the
following abbreviations.

C{Ffi} = C{Fni,..., Fnk}

C{Fa} d^ C{FU,...,FU}

The length of a list of parameter p will be denoted |p|.

Definition 3.15 For each k, we partially order the set Nk by

n <n' 4=^ (ni < n[A ■ ■ ■ A rik < n'k)

15

Definition 3.16 A subset I C Nk is said to be cofinal in Nk if and only if,
for all n € Nk, 3n' E I : n < n'. We write Vcof(N

k) for the set of all such
cofinal subsets of Nk.

We say that a context C is a value if it follows the grammar for values v
augmented by the obvious clause for parameters. We introduce the following
definitions of sets of value contexts

VCtxT(r) = { C G CtxT(r) | C is a value or C is a parameter }

VCtxT
d=VCtxT(0)

We use V to range over value contexts. We say that a value context is proper
if it is not a parameter.

Remark 3.17 Note that, if V{-T} £ VCtxTi is a proper value context and
e G ExpT, then V{e} is a value. Also, ifV{-T} € VCtxTi and v € ValT, then
V{v} is a value.

Notation 3.18 We abbreviate V{F^} and V{FQ} analogously to C{Fifl}
and C{FQ}.

Definition 3.19 If C{p} is a context and V{p'} is a value context, then we
write C{p} tyF V{p) to mean that for all I £ Vcoi{N^)

{mm' | rh£lAC{FrA}^*V{FrAI}}eVca[{N^+^)

Note that the relation C{p} i}.F V{p} is preserved under renaming of the
parameters p and, independently, the parameters p .

Lemma 3.20 If C{p} is a context and V{p } is a value context, then

C{p}i^FV{0} <=> C{pq}HFV{p'c?}

Proof By definition of Jj-F and simple properties of cofinal subsets of Nk. D

Lemma 3.21

1. IfV{p} is a proper value context, then V{p} tyF V{p}.

2. If E'{V}{p] $F V"{p"} and V'{pp'} is a value context, then
E'{fst(V,V')}{ppl}VV"{p"}.

16

3. IfE'{V}{p} 4F V"{p?'} and V'{pp'} is a value context, then
E'{snd(V,V')}{pp'}rV"{p"}.

4. IfE'{V}{p}^FV'{pi},then
E>{out(\nV)}{p}VV{p'}.

5. IfE'{ei v}{p} 4F V{p} and e2 = C2{Fa} for some C2{0}, then
E'{case(inlT2 v,eue2)}{ptf} ^ V{p'}

6. IfE'{e2v}{p} tyF V{p'}, and ex = Cx{Fa} for some Ci{pp'}, then
E'{case(inrTl v,eue2)}{pp} ^ V{p'}

Proof Item 1 is immediate. We show item 2; items 3-6 are similar.
Let C = E'{V} and let C = E'{fst (V, V')}. By the assumption and

Lemma 3.20,
C{tf}^FV"{p") (18)

Assume / e VC0{{N^+^^). Then we are to show that

I' d£ { mm' | m e I A C'{FA} ^* V"{FM} }

,J/I , - -// -

is a cofinal subset of JVlPl+lP I+IP I. But C'{FA} i-> C{FÄ} so by determin-
ism of evaluation, C'iF^} *-*■* V"{FM] if and only if C{FA} ■-)■* F"{FÄ/}.
Hence I' equals the set

{mm' | me IA C{Fft} ^* V'^F^} }

which by (18) is a cofinal subset of JVlPWP WP I, as required. D

Lemma 3.22 (Compactness of Evaluation) For all C{p} € Ctxr, if
C{FQ} I->* v, then there exists a V{0} € VCtxT such that v = V{F^}
and C{p} tyF V{p'}.

Proof By induction on the length, n, of C{F^} H** V.

Basis (n = 0): Pick V = C. If C is a parameter, then the required
is immediate (recall that Fw is a value). Otherwise, C is a proper value
context and the required follows by Lemma 3.21, item 1.

Inductive Step: We assume it holds for n and show for n + 1. To this
end assume C{FQ} h->n+1 v. We proceed by cases on the first reduction
step.

Case R-FST: Then C{Fa} = E{fst (wi,«2)} with E = E'{Fa}, vi =
Vi{FQ}, and v2 = V2{FQ] for some E'{p[}, Vi{P~i}: and ^{p^p^} with

17

p = p"ip^. Moreover, E{fst (vi,v2)} t-* E{vi} ^n v. Note that E{vi}
is of the form C[{Fa} where C{{p~i} = E'{Vi}{p[}. Hence we can apply
induction on n to yield that there exists a Fjp'} such that v — V{Fj} and
C'liPi} ^F V{p'}. By Lemma 3.21, item 2, also C{p} Jj-F V{p'}, as required.

Case R-SND, R-OUT, R-CASE-INL, R-CASE-INR: All analogous to preced-
ing case, using corresponding item in Lemma 3.21.

Case R-BETA: Then C{FÜ} = E{(i\x f'(x':T').e') v'} for some /', x', r',
e', v', and E. There are two cases, depending on whether F — fix f'(x':T').e'
or not.

SubCase I: Assume F = fix f(x':T').e'. Then

C{Fa) = E{(i\xf(x:r).e)v'}

^ E{[f\xf(x:T).e,v'/f,x]e}

where E = E'{Fj} and v' = V'{Fa} for some E'{p} and F'{p}. We have
that

£?{[fix f(x:r).e,v'/f,x]e} = Ef{\p,V'lf,x]e}{Fa}

Let C'{pp} = E'{\p,V'/f,x]e}. Then we have that C'{Fa} ^
n v so by

induction on n there exists a F-fp'} such that v = V{p } and

cm ^ vip1} (i9)

We aim to show that

C{p}fV{p'} (20)

Let / G VC0f(N^) be arbitrary. We are to show that

h d= {mm! | m G / A C{F^} ^* F{F,^y} }

is a cofinal subset of JVlPl. Define

72
d=If { M | m G I A n = nk A C{FÄ} ^ C'{Fn^} }

Clearly, J2 is cofinal since I is cofinal. By (19) we therefore have that

h = { mm' | m G J2 A C"{FÄ} H** F{Pä,} }

is cofinal. Now it is easy to see that I3 C Ix and thus, since J3 is cofinal, I\
is cofinal. Since I was arbitrary, we have (20) as desired.

18

SubCase II: Assume F ^ fix /'(x':r').e'. Then

C{Fa} = E{(i\xf'(x':T').e')v'}

H. E{[fixf'(x':T,).e!,v'/f,x]e!}

\-^n v

and E{[i'\x f'(x':T').e',v'/f,x]e'} is of the form C\{Fa} for some Ci{pp~i}.
By induction we get that

CIIPTIH^P'} (21)

Let I G Pcof (JVlPl) be arbitrary. Let

7i =f {mm! | mG/Am'GiVPi}

Then I\ is a cofinal subset of JVlPl+lPil since I is cofinal. Hence, by (21),

h d= { mrh'rh" \ mm! e h A Ci{l^y } H+* V^F™»} }

is cofinal and thus it is easy to see that also

h = { mm" | me I A C{Fm} H>* V{FW} }

is cofinal, as required. D

The following lemma expresses that the finite unrollings of a fix-term
form a chain with respect to the approximation order and that the fix-term
itself is an upper bound of this sequence. We shall soon see that it is in fact
the least upper bound.

Lemma 3.23 For all i € N, \~ Fi < Fi+1 : TX -± r2 and h F; ■< Fu :
r\ ->■ r2.

Proof Both properties are shown by induction on i. D

To show that a fix-term is the least upper bound of its finite unrollings
we shall need that the operation of filling a context is a monotone operation
with respect to the experimental pre-order (in other words, the experimental
pre-order is a pre-congruence). To this end we shall first generalize the
experimental pre-order to open expressions in the following way.

19

Definition 3.24 An expression substitution 7 for a type environment V is
a finite map from variables to closed expressions satisfying the following two
conditions.

1. Dom(7) = Dom(r).

2. Vrc G Dom(7) : 0 I- 7(2:) : T{x).

Definition 3.25 A value substitution 7 for F is an expression substitution
for F satisfying Vic G Dom(r) : j(x) -I]-

Definition 3.26 Let 7 and 7' be expression substitutions for F. Then 7
approximates 7', written h 7 ^ 7' : T, «/ and only if \/x G Dom(T) : H
j(x) ■< j'(x) : r(a;). Likewise, we write h 7 K f : T, »/ and only if
\/x G Dom(r) : h 7(1) « Y(a;) : F(x).

Note that this definition also expresses when a value substitution 7 approx-
imates another value substituition 7' (both for some T) as a value substition
is just a special expression substitution (we need a notion of expression
substition in Section 3.2, which is why we have chosen this formulation).

Definition 3.27 (Open Experimental Approximation and Equivalence)
For all e and e', if F h e : r and F h e' : T, then we define F h e ■< e' : r if,
and only if, for all value substitutions 7 and 7' for F satisfying h 7 -< 7' : F,
\- 7(e) ■< 7'(e') : r. Moreover, we define F h e « e' : r «/ anc? on/?/ «/

r h e X e' : r anG? F h e' ^ e : T.

An alternative definition of open experimental approximation would be to
say that T h e ^ e' : T if and only if, for all expression substitutions 7
for T, h 7(e) -< 7(e') : r. However, we need the more general definition
(specifically it is used in proving (22) below).

Lemma 3.28 If [f : T± —*■ T2,x : T\] \- e < e' : T2 then h fix f(x:ri).e -<
fix f(x:Ti).e' :T\ —*■ T2.

Proof By induction on i, it is easy to show that, for all i G A",

h fix fi{x:r1).e < fix fix-.Tij.e1 :T^T2 (22)

By Corollary 3.14, it suffices to show,

V£{_T1_,T2 «1} G ECtxi : £{fix f{x:n).e} <k £{fix f(x:Ti).e'}

20

So assume, E{(fix f(x-.Ti).e) (vi)} i->* *. Let C{-n-,T2} = E{.Tl^T2v\}.
Then, by Lemma 3.22, there exists a F-fp'} such that V-fi^} = * and

C{p} f V{p'} (23)

Let I = N, clearly a cofinal set. Then by (23),

I' = {i e I | C{fix f(x:n).e} ^* * }

is a cofinal subset of iV|p|. Hence /' is in particular non-empty, i.e., there
exists i e I' such that C{fix fl(x:ri).e} >-^* *. Thus, by definition of I and
C, there exists an i € N such that E{(i\x fl(x:ri).e) (v\)} (->■* *. Hence,
by (22), we also have £{(fix p{x:ri).e>) (vi)} H+* *. Then by Lemma 3.23,
we get jE7{(fix f(x-.Ti).e') (vi)} i->* *, as required. D

Lemma 3.29 7/r,T' h e ^ e' : T, C{_T} € CtxT,(T), Y h C{e} : r', and
r h C{e'} : T', then F h C{e} ^ C{e'} : r'.

Proof By induction on C. In the case for C = fix f(x:r).C', use Lemma 3.28;
all the other cases follow easily (either directly by the assumptions or by
induction and using Lemmas 3.7-3.11 and composition of evaluation con-
texts). D

The following corollary expresses the monotonicity of contexts with re-
spect to the experimental pre-order — in other words, the experimental
pre-order is a pre-congruence. We shall subsequently show that contexts are
not only monotone, but also continuous (in an appropriate sense).

Corollary 3.30 (Context Monotonicity) If H e ■< e' : T\ and C{_Tl} G
CtxT, then h C{e} < C{e'} : r.

Proof Follows immediately by Lemma 3.29. D

Lemma 3.31 If h e\ ■< e[: T\, ..., \- ek ^ e'k : rk and C{_i,..., _fe} € CtxT

with _j of type ri, for all! < i <k, then h C{e\,..., ek} ■< C{e[,..., e'k} : r.

Proof By repeated application of Corollary 3.30 and transitivity of ;< D

Corollary 3.32 (Experimental equivalence is a congruence relation)
If h e\ fa e\ : T\ ..., h ek ~ e'k : rk and C{_i,...,-k} G CtxT with _j of type

Ti, for all 1 <i < k, then h C{e\,... ,ek} « C{e[,... ,e'k} : r.

21

Proof Follows immediately by Lemma 3.31. □

Before embarking on the theorem from which it follows that a fix-term
is the least upper bound of its finite unrollings (Theorem 3.36), the proof of
which will make use of context monotonicity, we shall first make another use
of context monotonicity. We shall show that experimental approximation
can be used to give an alternative characterization of the usual definition
of contextual equivalence — via this alternative characterization, the proof
principles for establishing experimental equivalence that are developed in
this paper can be used also to establish results of contextual equivalence.
This theorem (Theorem 3.34) is reminiscent of the CIU Theorem of Mason,
Smith and Talcott [11].

Definition 3.33 (Contextual Approximation and Equivalence) IfV h
e : T and F \- e' : T, we define

he^ce':T <{=► VC{_T} € Ctxx : C{e} ^k C{e'}
h e «

c e' : r <*=» VC{_T} € Ctxx : C{e} nk C{e'}

Theorem 3.34 If T h e : r and T h e' : T, then (- e ^c e' : r iff T h e ^ rtsiii o.o^ IJ L re./ unu, x i c . / , wie» > ^ _'

T.

Proof
=> Assume \- e <c e' : r Further assume h 7 ^ 7' : T and that

E{y(e)} (->* *. We are to show that #{7'(e')} t-»* *. Assume that
Dom(r) = {xi,...,xn} and let n = T(xi). Without loss of generality
(by the definition of value substitution and by considering the following
part of the proof) we may assume that 7(2^) € ValTi and 7'(a;*) € ValTi. Let
Vi = "y(xi) and v\ = "i'{xi), for all 1 < i < n. Let

C{_T} = Xxi-.Ti.--- \xn\Tn.E{-T}vi ■Vr,

Then C{e} i-)-* *. Hence by the assumption that h e ^c e' : r, also
C{e'} ^* *. Let

C"{_T1,... ,-Tn} = Arci:ri.- • • Aa;„:r„.£;{e'} _T1 • • • -Tn

Then we have that C'{vi,... ,vn} H-»* *. By Lemma 3.31,

\rC'{v1,...,vn}±C'{v'1,...,v'n}:l

Hence it follows that C'{v[,...,v'n} i->* *, and thus E{-y'(e')} H>* *, as
required.

22

<^= Assume T h e ^ e' : r. Then, by Lemma 3.29, h C{e} ^ C{e'} : 1.
Erom this it follows (with E = _i) that C{e} -<k C{e'}, as required. D

Corollary 3.35 If Y \- e : T and V h e' : T, then h e PZ
C
 e' : T iff

rhewe':r.

Proof Immediate from Theorem 3.34. D

Theorem 3.36 For all C{p} G CtxT, the following three propositions are
equivalent.

1. \-C{Fa}±e:T

2. 31 G Vc0f{N\P\) :Vm£/: h C{FA} <e:r

3. VJ G Vcoi(N\P\) :Vm£l: h C{FA} < e : T

Proof We show that 1 is equivalent to 2 and that 1 is equivalent to 3 from
which the theorem follows.

1 =» 2: Let I = {in G iVlPl | m\ = rri2 = ••• = migi }. J is clearly
cofinal. By Lemmas 3.31 and 3.23 we get Vm G / : I- C{Fm} ^ C{Fa} : r
so by transitivity the desired follows.

2 =>■ 1: Let E{-T} G ECtxi be arbitrary. We are to show that

E{C{Fa}} ±k E{e}

So assume E{C{FS}} \-t* *. Then by Lemma 3.22, there exists a V{p}
such that V-TPb} = * and

£;{C}{p}^FT/{p'} (24)

Clearly, V = *. By the assumption that / G VC0{(N^) and (24) we get that

/' = {me/| £{C}{FÄ}^**}

is a cofinal subset of JVlPl. Hence /' is in particular non-empty, i.e., there
exists me/' such that £{C}{FÄ} ■-►* *. Now, £{C}{FÄ} = E{C{FA}}
so we have 3m G /' : £?{C{i^}} >-»* *. Finally, since /' is a subset of / we
get by the assumption 2 that E{e} H->* *, as required.

1 => 3: Let / G PcoK-W'P') be arbitrary. The required follows by
Lemmas 3.31 and 3.23 and transitivity, (as in 1 =4> 2 above).

23

3 =>■ 1: Easy, since clearly 3 =» 2 and we have already shown 2 =^ 1
above. 0

Corollary 3.37 (Context Continuity) For all C{p} e CtxT,

\-C{Fz}±e:T <=^ VnGTV: h C{Fn,... ,Fn} X e : r

Proof Follows by Theorem 3.36. □

Let C{p} = -Tl--T2 in Corollary 3.37. Then the corollary together with
Lemma 3.23 intuitively says that Fw is the least upper bound of the chain
of its finite unrollings: By Lemma 3.23,

F0 r< Fi < F2 ± ■ ■ ■

is a chain with upper bound Fw. By Corollary 3.37, if e is an upper bound
of the same chain, then Fu < e, so Fw is a least upper bound of the chain:

FU} = \J{F0,F1,F2,...}

Furthermore, by Corollary 3.30,

C{F0}^C{F1}^C{F2}^---

is again a chain with upper bound C{FW}, and by Corollary 3.37, if e is an
upper bound of the same chain, then C{FW} < e, so C{FU} is a least upper
bound of the chain:

C{FU} = LJ{ ^{^o}, C{F1), C{F2},...}

In other words, to fill a context is a continuous operation for chains of finite
unrollings of fix terms with respect to the approximation order.

As explained by Mason, Smith, and Talcott [11] arbitrary chains of terms
do not always have a least upper bound. This leads Mason, Smith, and
Talcott to develop a notion of ordering between sets of terms, for which
arbitrary chains do have a least upper bound, [11, Lemma 4.31]. Here,
however, we shall only ever consider chains of the form

C{F0}^C{F1}^C{F2}^---

for some given closed fix-term F and thus the chains, which we shall consider,
will always have a least upper bound. Hence we do not need to develop
more complicated notions of approximation ä la the set ordering developed
by Mason, Smith, and Talcott [11].

24

3.2 Syntactic Projections

In this section we introduce syntactic projection terms which are the syn-
tactic counterpart of the semantic projection functions known from domain
theory. These syntactic projections will be used in the construction of the
desired relations in Section 5.

Let 7T be a variable. For all types T, we define terms nr : r —*■ r (given
7T : p -*■ p) by induction on r as follows.

up = Xx:p.irx

rio = Xx:0.x

IIi = Xx:l.x

nrixT2 = XX-.TI x T2.(IITl (fst x),UT2 (snd x))

nri+T2 = \X:TI+T2.case(x,\x:Ti.'m\T2 (IlTlx),\x:T2-'\nrTl (UT2x))

nT1^T2 = W:n -*■ T2.\X:TI.UT2 (/ (nT1 x))

Note that -K is possibly free in these so defined terms. Further, define terms
nl : p —^ p, for all i > 0, by induction on i as follows.

■K = fix Tr(x:p).TTX

iri+1 = Aa;:p.[7rV7r]in(nTp(outa;))

and define
7r°° = fix ir(x:p).\n (UTf) (out x)) : p -*• p

Observe that irl and also TT°° are values.
Note that the 7rl's are the finite unrollings of the fix-term ir°° so, as

explained in the previous subsection, 7r°° is the least upper bound of the
chain of 7rl's. The 7r°° term corresponds to the least fixed point üx(S) of the
continuous function 6(e) = iF(e,e)i^1 in [17, Definition 3.2]. We shall show
that 7r°° is experimentally equivalent to the identity function (more precisely,
the term Xx:p.x); this corresponds to the minimal invariant property in [17,
Definition 3.2].

Example Assume TP = 1 + p. Intuitively, our recursive type then corre-
sponds to the type of natural numbers. Then ir°° is equal to

fix ir(x:p).\r\ ((Xx:l + p.case(x,Xx:l.\n\p ((Xx:l.x) x),Xx:p.\nri {{Xx:p.irx) x))) (out x))

Intuitively, it is clear that this is equivalent to the identify function. D

25

For all T and all i > 0, we define

nj. d= [7rV7r]nT :T^T

Finally, for all r, we define

noo def ^oo/^^ . T _± T

The following Lemmas 3.38-3.41 express that the above definitions do
indeed define terms.

Lemma 3.38 For all T, [IT : p -*■ p] h IIr : r -*• r.

Proof By induction on r. D

Lemma 3.39 h TT°° : p -± p.

Proof By Lemma 3.38 and strengthening lemma for typing. D

Lemma 3.40 For all T, h II~ : r -^ r.

Proof By Lemmas 3.38 and 3.39 and substitution for typing. D

Lemma 3.41 For all r, for all i > 0, h Ii\ : r —»■ r; and for all i > 0,
h -K1 : p —*■ p.

Proof Simultaneously by induction on (i, r) ordered lexicographically. D

We aim to show that 7r°° is operationally equivalent to the identity func-
tion Xx:p.x. To this end we need a series of simple lemmas which we now
proceed to establish .

Lemma 3.42 // hew*:l then

1. For alli>0, h U\ e « * : 1.

2. hnfe«*:l

Lemma 3.43 //he« («1,^2) : T\ X T%, then

1. For all t > 0, h 11^ XT2 e » (11^ «i, 11^ v2) : n x r2.

26

2. h n~XT2 e« (n~ vi,n~«2): n x r2.

Proof We show 1; 2 is similar. Let i > 0 be arbitrary. Assume he«
(i>i,v2) : Ti x 7"2- Then by Lemma 3.5, e JJ-, i.e., there exists a v such that
e i->* v. By Canonical Forms Lemma (Lemma 2.11), v — (v[,v'2) for some
v[and v2. Hence

ntlXT2 e = (AS:TI X r2.(nt1 (fst x),42 (snd x))) (e) ^* (11^ «i,^ t;2)

Thus by Lemma 3.7 h n^lXT2e « (n^ «i,IT;2 v2) : n x r2 and hew
(w^,^) : Ti x T2- By transitivity of «, we get have h («1,^2) ~ (^'D^)

:

T\ x T2- By Lemma 3.9 it then follows that h v\ ~ v^ : TI and h
V2 ~ «2 : T2- Hence it follows, by composition of evaluation contexts, that
h n^ v\ « n^ ^ : TI and h n^2 v2 ~ n^ v2 : T2. Hence, by Lemma 3.9,
h ITT1XT2 (e) « (n^ ui, n^.2 v2) : n x r2, as required. D

Lemma 3.44

i. //hex inlT2 v : Ti + T2, £/&en

(aj For all i>0, h n5-1+T2 e s=s inlT2 (H^ v) : TI + r2.

f&j hn-+T2e«inlT2(n5>):T1+T2.

Ü. //he« inrTl u : TI + T2, then

(a) For all % > 0, h n^+r2 e sa inrTl (11^ v) : n + r2.

W hn~+T2e«inrT1(n~?;):T1 + T2.

Lemma 3.45 // H e « u : Ti -^ T2, f/ien

i. For a//1 > 0, h 11«^^ e « Axin.II^ (u (n^ x)) : n -*■ r2.

5. h n~^T2 e w Az:ri.n~ (t; (H£ a;)) : n -* r2.

Proof We show 1, 2 is similar. Let i > 0 be arbitrary. Assume he»
u : TI —^ T2. Then by Lemmas 3.5, 3.7, and 3.8, there exists a v' such that
e H->* u' and h v « «' : TI —^ T2. Hence,

H^T2 (e) H+* irn^ (v') ^* Xx-.n.U^ (v' (% (x)))

so by Lemma 3.7

h nt^r2 (e) « Xx-.n.n^ («' (nj, (*))): n - r2

27

We now claim that

h Xx-.n.U^ (v (I4 (x))) « Xx:n.Ui2 (v' (U^ (x))) : n ^ r2 (25)

from which the required follows by transitivity. By Corollary 3.14, to show
the claim (25), it suffices to show that

h Xx:Tl.Ui2 (v (lit, (x))) (vx) » \X:TX.K2 (V
1
 (ffTl (x))) M : r2 (26)

where «i 6 ValTl is arbitrary. Clearly, the left hand side in (26) is oper-
ationally equivalent to WT2 (v (IT^ (vi))) and the right hand side is opera-
tionally equivalent to H\2 (v' (Ul

Tl («i))), but these two expressions are op-
erationally equivalent because v and v' are operationally equivalent and by
composition of evaluation contexts (with the context WT2 (-ri^r2 (n^ (ui))))-
Hence, by transitivity, the desired (26) follows. D

Lemma 3.46 // h e « in v : p, then Yl°p e f|\

Lemma 3.47 If \- e « in « : p, then

1. For alii > I, h^ea in (U^1 v) : p.

2. hn~e«in (11?°«) : p.

Lemma 3.48 // h e « in « : p, then

1. For alii > 1, h TT* e « in (Ü^T1 u) : p.

£ h 7r°° e « in (n~ u) : p.

Lemma 3.49 For all T and for all i>0, \~ Ul
T ^ \X:T.X :T-^T.

Proof By Lemma 3.6 and Corollary 3.14 it suffices to show, for all r, for
all v G ValT, for all E{-T-±T v}

E{T?T v} ^k E{v} (27)

We show this by induction on (i, T) ordered lexicographically. We proceed
by cases on T.

Case T = 1: Follows by Lemma 3.42.
Case T = 0: Vacously true since Valo = 0.
Case T — p: We consider two cases, i = 0 and i > 0.
SubCase i — 0: Follows trivially by Lemma 3.46.

28

SubCase i > 0: By Canonical Forms Lemma(Lemma 2.11), v = in v' for
some v' 6 ValTp. Assume E{U.lTm v'} H->* *. Then by Lemma 3.47 (with
e = in v1 and using reflexivity of « and noting that % > 0 by assumption)
we also have that E{\n (n^r1 v')} H^* *. Note that i - 1 > 0 as i > 0 by
assumption and that (i — 1,TP) < (J,T) in the lexicographical order, so we
can apply induction to get E{\r\ v'} i-»* *, which is the required.

Case T = T\ x T2'. Follows by Lemma 3.43 and induction on (i,Ti) and
ihT2).

Case T — T\ + T2'- Follows by Lemma 3.44 and induction on {i,T\) or
(i,T2) depending on whether v = inlT2 v' or v = inrTl v'.

Case T = T\ -At2: Follows by Lemma 3.45 and Corollary 3.14, induc-
tion on (i,T\) and induction on (i, T2). D

We are now in a position to show one half of the operational equivalence
of 7r°° and the identity function, namely that TT°° approximates the identity
function.

Lemma 3.50 h 7r°° ^ Xx:p.x : p —*■ p

Proof By Corollary 3.37, it suffices to show

V» € N : \~ -K
{
 < \x:p.x : p ->> p (28)

We show this by induction on i.
Basis (i = 0): By Lemma 3.6, Corollary 3.14 and Canonical Forms

Lemma (Lemma 2.11), it suffices to show, for all E{-p (in v)} £ ECtxi and
all v 6 ValT/3,

E{TT° (in v)} ^k E{m v}

Recalling that 7r° = fix 7r(x:p).Trx the required follows immediately.
Inductive Step: We assume (28) holds for i and show for i + 1. By

Lemma 3.6, Corollary 3.14 and Canonical Forms Lemma (Lemma 2.11), it
suffices to show, for all E{-p (in v)} E ECtxi and all v G ValT/3,

E{ni+1 (in v)} ±k E{m v}

To this end, assume
E{TTi+1 (in v)} ^* * (29)

Then by Lemma 3.47 (with e = in v and using reflexivity of w and noting
that i + l>lasi>0by the assumption that i G N) we also have that

£{in(nt„ «)}->** (30)

29

Then by Lemma 3.49, also E{\n v} >-¥* *, as required. D

Next we aim to show the other half of the operational equivalence of
7r°° and the identity function, that is, that the identity function opera-
tionally approximates 7r°°. We shall employ an idea of Mason, Smith, and
Talcott [11].

We now proceed to show idempotency of n^° and ir°°. The strategy is
to show lemmas for 115- and ft1 and then use compactness of evaluation to
get the desired results.

Lemma 3.51 For all i > 0 and for all T, hn^ XX:T.U^ (II?0 X):T^T.

Proof By Corollary 3.14 it suffices to show, for all % > 0, for all v E ValT,
and for all E{.T^rv) E ECtxi,

E{Ui v} ^k E{(\X:T.T1™ (n~ x))v}

This can shown by induction on (i, r) ordered lexicographically. D

Lemma 3.52 For all i > 0, h 7r* r< \x:p.-K°° (TT
00

 X) : p -^ p.

Proof Follows by Lemma 3.51. D

Lemma 3.53 For all i > 0 and for all T, h \X:T.WT {WT X) ■< n~ : T -»■ r.

Proof By Corollary 3.14 it suffices to show, for all i > 0, for all v E ValT,
and for all E{.T^Tv] E ECtxi,

E{(XX:T.ITT {Ui x)) v} <k E{W? v}

This can shown by induction on (i, r) ordered lexicographically. D

Lemma 3.54 For all i>0,\~ Xx:p.nl (TT
1
 X) ■< 7r°° : p —^ p.

Proof Follows by Lemma 3.53. □

Lemma 3.55 For all T, h ITf ^ \X:T.II™ (Ilf X):T^T.

Proof By Corollary 3.37, with C = -T-+T, and Lemma 3.51. D

30

Lemma 3.56 h -K°° ■< Xx-.p.n™ (TT
00

 X) : p -»■ p.

Proof By Corollary 3.37, with C = -p^p, and Lemma 3.52. □

Lemma 3.57 For all r, h \X:T.T[? (ILf x)±Il™ :T^T.

Proof By Corollary 3.37, with C = \x:p.-\ (_2 x) with _i and _2 of type
T -^ T, and Lemma 3.53. D

Lemma 3.58 h Xx:p.ir°° (TT
00

 x) ■< TT
00
 : p -»■ p.

Proof By Corollary 3.37, with C = Xx:p.-\ (_2 x) with _i and _2 of type
p —*■ p, and Lemma 3.54. D

Corollary 3.59 For alle G ExpT and for allE{^T} € ECtxT,, h E{W? (II?0 e)}
E{n~ e} : r'.

Proof Follows by Lemmas 3.55 and 3.57. D

Corollary 3.60 For alle G Expp and for allE{.p} e ECtxr, h E{7r°° (TT
00

 e)}
E{n°° e} : r.

Proof Follows by Lemmas 3.56 and 3.58. D

We then define a "compilation" relation for expressions that annotates
terms with syntactic projections. The relation T h e : r =» |e| is defined by
induction on F \- e : r by the axioms and inference rules in Figure 2. It is
easy to see that if V h e : r, then T h e : T => |e|, for some |e|.

Lemma 3.61 IfT\-e:r=^ \e\, then T h |e| : r.

Proof By induction on T h e : r => |e|. D

For any -B{-T} € ECtxT', we define |.E| as follows. Clearly, [z : T] h
E{z} : T'. Thus for some e', [2 : r] h -E{z} : T' =£> e'. By induction on

the derivation there will be one free occurrence of z in e'. We define \E\ =
[_T/z]e', and by the remarks given here and Lemma 3.61, |.E|{_T} G ECtxT/.

Lemma 3.62 For all e G ExpT(F) and for all expression substitutions 7 for
T, ifT\-e-.T => \e\, then h II~ (-yje|) ~ l\e\ ■ r.

31

r I- x : r =» n^° re (r(ar) = r) (TR-VAR)

r h *: i => nf * (TR-ONE)

r h ei : T\ => |ei| r h e2 : T2 =>]e2[

n-(ei,e2) :ri x r2 =*• n~XT2 (|ei|, |e2|)

The T\ X T2 =*► e|

n-fct e : T\ => fst |e|

The n X T2 => e|

T h snd e : r2 => snd |e|

T h e : ri =>• |e|

T h inlT2 e : rx + r2 => n^+T2 (inlT2 |e|

T h e : r2 =4> |e|

(TR-PROD)

(TR-FST)

(TR-SND)

(TR-INL)

(TR-INR)
r h inrTl e : Ti + T2 =» n^+T2 (inrri |e|)

r h ei : ri + r2 =>■ |ei| r h e2 : n -*■ r =>■ |e2| r h 03 : r2 —^ r =>■ |e3|

T hcase(ei,e2,e3) : r =» case(|ei|, |e2|, |e3|)
(TR-CASE)

 r[/ : TI ->• T2][X : ri] h e : r2 => |e|

T H fix /(a::Ti).e : n -- r2 =* n~^T2 (fix /(x:n).|e|

r h ei : r2 —*■ r =>• |ex j T H e2 : T2 =^ |e2|

r I- e\ e2 : r =£- |ei| |e2|

T h e : p=» |e|

T h out e : rp =» out |e|

T h e : Tp =>• |e|

rhine:p^n~(in |e|)

Figure 2: Definition of T h e : r => |e|

32

(/,;r0Dom(r))

(TR-FIX)

(TR-APP)

(TR-OUT)

(TR-IN)

Proof By induction on T \- e : r => |e|.
Case TR-VAR, TR-ONE, TR-PROD, TR-INL, TR-INR, TR-FIX, TR-IN: Use

Corollary 3.59.
Case TR-FST: By induction we get that

h7|e|«n~XT2(7|e|):T1XT2 (31)

We are to show I- fst (-yjej) « II~ (fst (7|e|)) : n X T2. If 7|e| ff then
it follows by Lemma 2.15. Thus assume that -y|e[JJ-, that is, that there
exists v G ValriXT2 such that 7|e| i-)-* u. By Canonical Forms Lemma
(Lemma 2.11), v = («1,^2) for some «i, w2. By (31), Lemmas 3.7 and 3.43
and transitivity of «,

h7|e|^(ri?>,IL>2):T1XT2 (32)

By Lemmas 3.7, 3.8, 3.9, and (32), we get

r-fct(7|e|)«n~«i:Ti (33)

Further, again using Lemmas 3.7 and 3.9,

h fst (7|e|) « «i : n (34)

so by composition of evaluation contexts, (34) gives

hn£(fst(7|e|))«n~«i:ri (35)

which together with (33) gives the required by transitivity and symmetry of

Case TR-SND: Similar to the case for TR-FST.

Case TR-CASE: We are to show that t- IL?3 (case('yjei|,'y|e2|,'yle3l)) ~
case(7|ei|,7|e2|,7|e3|) : r. If -y|e| -ft then it follows by Lemma 2.15. Thus
assume that -y|e| -IL

SubCase I: Assume 7|e| i-»-* inlT2 v\. Then by Lemma 3.7, it suffices to
show h n^° (7|e2| {v\)) ~ 7|e2| (vi) '■ T- Assume 7|e2| >-»* v (otherwise the
required follows by Lemma 2.15). By induction we have

h-7|e2|^n^T(7|e2|):T1-r

so by Lemma 3.7 and transitivity of RJ we get

33

Thus it suffices to show

hII?((Il^Tv)v1)K(n^Tv)v1:T

But

so by Lemma 3.7 and transitivity of « it suffices to show

h n- (n~ (v (n~ «!))) « n- („(n~ Vl)): r

but this follows from Corollary 3.59.
SubCase II: Assume j\e\ i->* inrTl «i. Similar to SubCase I.
Case TR-APP: Follows by induction and Corollary 3.59.
Case TR-OUT: Follows by induction and Corollary 3.59. D

Lemma 3.63 For all e E ExpT(T) and for all expression substitutions 7, 7'
for r, i/ h 7 ^ 7' : T and rhe:r=> \e\, then h j\e\ ^ 7'(e) : r.

Proof By induction on V h e : r =4- |e|, using Lemma 3.31 and Lemma 3.50.
For rule TR-FIX, by compactness it suffices to show, for all i E N,

h 7(fix rixmUel) =< 7'(fix r(^:ri).(e)) : r

This is shown by induction on i using the outer induction hypothesis in the
inductive step. D

Corollary 3.64 7/0 h e : r => |e|, i/ien h- |e| -< e : r.

Proof By Lemma 3.63. D

Corollary 3.65 For all E{„T} E ECtxTi and for all expression substitutions
jforT = [z: r], i/[« : r] h- E{z} => |£{«}|, iÄen h 7|£{-*}| =< 7(^}) : T'.

Proof Follows by Lemma 3.63. D

Lemma 3.66 For all e E ExpT and for all E{^T} E ECtxT>

1. If [x\ : Ti,... ,xk : Tk] \~ e => \e\ and 0 h ei : TI, ..., 0 h e^ : r^, £/ien

h |[ei,...,efc/a;i,...,a;fc]e| « [jex |,..., \ek\/xi,... ,xk]\e\ : r

34

2. ^\E{e}*\E\{\e\}:r>.

Proof

1. By induction on [x\ : T\, ..., Xk : r^] H e =£• |e|.

2.

|£{e}| = |[e/a;]£{:r}| by Lemma 2.3
= [lel/zpMI byl
= \E\{\e\} by Lemma 2.3

where for the last application of Lemma 2.3 note that the lemma indeed
is applicable since \E\ is an evaluation context by the remarks on
Page 31.

D

Lemma 3.67 For all r and for all v G ValT the following holds.

1. \v\$

2. n?° \v\ \

Proof By induction on«. D

Lemma 3.68 For all e E ExpT, if 0 h e : r => |e| and e i->- e', then
\- \e\ « |e'| : r, where 0 h e' : r => |e'|

Proof Assume e i-> e'. Then e = E{r} for some £7 and r. We proceed
by cases on the reduction rule applied. We will use Lemmas 3.7 and 3.8
repeatedly without explicit mentioning.

Case R-OUT: Then r = out (in v) for some v. We reason as follows.

|e| = \E{r}\
« |I?|{|r|} by Lemma 3.66, item 2
= |#|{|out (in v)|}
= \E\{out (n~ (in H))} by definition

|E|{out (Uf (in v'))} by Lemma 3.67, 3v' : |v| ^* v
\E\{out (in (n~ «'))} by Lemmas 3.31 and 3.47
|£|{out(in(IT~M))}

ip

\E\{out (in v")} by Lemma 3.67, 3v" : n?° |«| ^* v"
\E\{v"} by R-OUT
|£|{n?>|}
\E\{\v\} by Lemma 3.62
le'l

35

by Lemma 3.67, 3v' : \v\ H->* v'

by R-BETA

by Lemma 3.62

by R-BETA
by Lemma 3.31
by Lemma 3.62
by Lemma 3.66, item 1
by Lemma 3.66, item 2

Case R-BETA: We reason as follows.

| « |E|{|(fix/(a;:Ti).ei)v|} by Lemma 3.66, item 2
« |£|{(n^r2(fix/(z:Ti).|ei|))M} by definition
« |£?|{(Aa::ri.n~((fix/(a;:T1).|ei|)(n~a;)))|«|} by Lemma 3.45
« |^|{(Aa;:r1.II^((fix/(a::r1).|ei|)(n~a:)))t;'}

« |^|{n~ ((fix /(^rO.lexl) (n^> b|))}
« ^^((fix/^rO-leiDI^)}
« ^^((fix/^rO.leiDt;')}
« I^Kn« ([fix /(a::Ti).|ci|,t;V/,x]|ei|)}
« |£|{n£([fix/(z:T1).|e1|>|//,z]|ei|)}
« |£?|{[fix/(a::ri).|ei|,|t;|//,a;]|ei|}
» |£?Kf[fix /(ariT-O-ex,«//,^!]}

~ le'l
Case R-FST: We reason as follows.

| « |E|{|fet((üi,U2))|} by Lemma 3.66, item 2
« |£|{fst ((M,|v2|))} by definition
« |£|{fst ((v[,v'2))} by Lemma 3.67, 3^i : |vi| i->* «i and 3u2 : H l~>* «2
« |i?|{t>i} by R-FST

* I^Khl}
a |e'| by Lemma 3.66, item 2

Case R-SND: Similar to the R-FST case.
Case R-CASE-INL: We reason as follows.

e| « |jK|{|case(inlT2 u,ei,e2)|} by Lemma 3.66, item 2
« |JB|{case(inlT2 |v|, |ei|, |e2|)} by definition
a |i?|{case(inlr2 v', |ei|, |e21)} by Lemma 3.67, 3u' : |u| >->•* v'
« |£?j{|ei|v'} by R-CASE-INL
a |JE|{|ei|M}
a |£?|{|eiv|} by definition
« |e'| by Lemma 3.66, item 2

Case R-CASE-INR: Similar to the R-CASE-INL case. D

Lemma 3.69 h Xx:p.x ^ ir°° : p —*■ p

Proof By Corollary 3.14 and Canonical Forms Lemma (Lemma 2.11) it
suffices to show, for all E{-p^p (in v)} 6 ECtxi,

E{\x:p.x (in «)} ^fc £{7r°° (in v)}

36

Let E{^p-±p (in v)} G ECtxi be arbitrary. By Lemma 3.6, it then suffices to
show,

E{m v} ^k E{-n°° (in v)}

By Corollary 3.64 it then suffices to show,

E{\n v} <k E{-K™ |in v\}

Since clearly h 7r°° « n^° : p —*■ p, by Lemma 3.62 it then suffices to show,

£{in v} dik E{\m v\} (36)

Suppose that

£{in v} <k \E{\n v}\ (37)

holds. Assuming this, we can reason as follows

E{\rt v} !->■* * => |i£{in v}| H>* * by assumption (37)
=> |£7|{|in u|} >->■* * by Lemma 3.66, item 2
=> E{|in u|} i->* * by Corollary 3.65

which gives (36) as required.
Thus we are left with showing (37). Clearly this follows from showing,

for all closed expressions e G Exp1;

e i—>* * =£■ |e| H-»* *

We show this by induction on the length m of the computation of e i-»* *.
Basis (m = 0): Then e = *, whence |e| = nf3 * i->* *, as required.
Inductive Step: Assume me' *->m *. Then by induction we get that

|e'| i->* *. By Lemma 3.68, also |e| >-»* *, as required. D

We are now in a position to establish the following theorem, which we re-
fer to as the syntactic minimal invariant property by analogy to the domain-
theoretic work of Pitts [17].

Theorem 3.70 (Syntactic Minimal Invariance) h 7r°° « Xx:p.x : p —*• p

Proof By Lemmas 3.50, 3.69, and 3.3. D

37

3.3 Summary

In this section we have defined a notion of experimental approximation and
experimental equivalence between terms and established some basic equiv-
alences of terms. Further, we have seen that the finite unrollings of a given
fix-term forms a chain with respect to the approximation pre-order and that
the fix-term itself is the least upper bound of this chain. This has been cru-
cial to establish the syntactical minimal invariant property for the recursive
type p, that is, that the projection term 7r°° associated with the recursive
type p is operationally equivalent to the identity term Xx-.p.x.

In the following we shall show how to construct relations over equivalence
classes of terms (with respect to the operational equivalence). The properties
established in this section are crucial to this construction, in particular, the
syntactial minimal invariant property plays a central role in adapting Pitts'
method [17] to our operational setting.

4 Relations

In this and the following section we shall show how to construct a relational
interpretation of types over an operational semantics. We shall end up by
showing "The Fundamental Theorem of Logical Relations" which states that
the relational interpretation of types is sound in the sense that well-typed
terms are related to themselves by the relation associated to their type. The
constructed relations can be seen to provide a notion of equality of terms,
which we shall refer to as "logical equivalence". In Section 6 we define this
notion of equivalence and show that it coincides with contextual equivalence.
Moreover, we derive a useful coinduction principle for establishing logical
equivalence and thus contextual equivalence. This section also provides the
necessary understanding for constructing a relational interpretation, which
we can use to show the correctness of cps transformation in Section 7.

In this section we define a universe of relations over equivalence classes
of closed expressions, with respect to operational equivalence. Further, we
define a notion of admissibility for relations. This corresponds to the notion
of admissibility (also known as inclusiveness or completeness) used in domain
theory, and is also here used as a condition on relations, which, loosely
speaking, allows one to show that a fix-term is in a relation by showing that
its approximants are in the relation. Next we show that admissible relations
equipped with the obvious ordering form a complete lattice, define relational
constructors corresponding to the type constructors of the language, and
show that these constructors preserve admissibility.

38

Throughout this section we will let n G N be an arbitrary but fixed
natural number, that is, we will consider n-ary relations for a fixed, but
arbitrary n G N. We will use the same abbreviations for terms involving
fix and for contexts as in Section 3.1. For any set A and natural number m
we write Am for the m-ary cartesian product of A. For any set A and any
equivalence relation = on A, we write A /= for the set of equivalence classes
of A with respect to =. To simplify notation we denote each equivalence
class by one of its representatives. Moreover, we will simply use « for the
operational equivalence relation at type r (i.e., (e, e') G~ <=> h e K e': T)

when r is clear from context.

Definition 4.1 For all T, we define a universe of n-ary relations RelT as
follows.

RelT
d=lf V ((ExpT /«)")

We use R to range over RelT.

Definition 4.2 A relation R G RelT is admissible if and only if it satisfies
both of the following two conditions.

Strictness: (ei,..., en) G R if and only if ((Vi G l..n : ej ff) V (V? G l..n :
3vt : ei i-)-* Vi A (vu ... ,vn) G R))

Completeness: For all i G l..n and for all Ci{p} G CtxT with all param-
eters in p of type T\ —*■ T2 and for all F^ = fix f{x\Ti).ei G ExpT1^T2,

andforallIeVcoi(N\P\),

{Vmel: (^{Fl},..., Cn{F£}) G R) =*

((Ci{i^},...,Cn{i^})Gi2)

Recall that C{p} means that all of the parameters of C are included in p,
that is, in the completeness condition the contexts C, are not required to all
have the same number of parameters.

The completeness condition on relations is motivated as follows. For
simplicity, let us just consider unary relations (n = 1). We wish to impose
a completeness property that allows us to conclude that C{FU} G R based
on whether some collection of finite unrollings of C{FW} are in R. Clearly,
it is not sufficient to establish that C{Fi} G R for some i > 0, since C{Fi}
may fail to terminate (and hence lie in R by the strictness condition on
relations), whereas C{FW} may terminate with some value. This suggests
that it may be sufficient to establish that C{Fi} G R for some i such that

39

C{Fj} terminates. But such a weak notion of completeness would not be
closed under the formation of function spaces between relations. Knowing
that C{Fi} terminates and that C{Fi} G i?i —*• i?2 does not entail that there
exists %' such that C{Fi>}(e) terminates and lies in i22. Consequently we
must assume that for every i there is a larger %' such that C{F{} G R so that
in the case of R = R\ —*■ R2 we may pick a large enough i' to ensure that an
application C{Fii] (e) terminates and hence lies in R2. The completeness
condition we have stated here ensures that this is the case.

Definition 4.3 For all r, we define a universe of admissible n-ary relations

RadmT as follows.

RadmT = {R E RelT \ R is admissible}

We also use R to range over RadmT.

We now define a series of relational constructors corresponding to the
syntactic type constructors. For each of these constructors it is easy to
verify that the definition does not depend on the choice of representative of
an operational equivalence class.

Definition 4.4

R0 ^ { (ex,..., en) 6 (Exp0 /»)" | V» G l..n : et ft }

Definition 4.5

Äi d= { (ei,.. •, en) G (ExPl /«)" | (Vi G l..n : e* ft) V (V* G l..n : e, ^* *) }

Definition 4.6 For a// R\ G i?e/Tl and _R2 G RelT2,

R1XR2 = { (ei,..., en) G (ExpTl XT2 /«)n I
(V* G l..n : ej ft)V
(V« G l..n : 3üj, v[: he;« (VJ, ^) : T\ X T2

A (u!,..., u„) G fix A («i,..., v'n) G R2) }

Definition 4.7 For all R\ G i?eZTl and i?2 G RelT2,

Ri + R2 = { (ei,..., en) G (fepTl+T2 /«)» I
(Vi G l..n : ei ft)V
(V« G l..n : 3uj : h e* « inlT2 Uj : ri + r2 A (ui,..., vn) G R\)
(Vi G l..n : 3uj : h e; « inrTl Vi : n + r2 A (vi,..., vn) G i?2) }

40

Definition 4.8 For all R\ G Reln and R2 G Rel

Ri -Ä2 = { (ei,..., en) G (ExpTl^T2 /*)n \
(Vi G l..n : ej ff)V
(Vi G l..n : 3vi : h e; « Vi : n -± r2 A ((ei, ...,ej,)6i?i^

(uie'1,...,t;ne'n) GÄ2))}

Lemma 4.9 For a// r, (RadmT, C) is a complete lattice.

Proof By a standard lattice-theory theorem (see, e.g., [2, Theorem 2.16(ii)])
it suffices to show that the greatest lower bound, /\ S, exists for every subset

of RadmT. Thus let S be an arbitrary subset of RadmT. Define /\S = f]S.
We then have to show

1. /\S G RadmT

2. /\ S is the greatest lower bound of S

Item 2 is obvious by the definitions. To prove item 1 we have to show that
the two conditions in the definition of admissibility are satisfied. They both
follow easily using the fact that each R G S is admissible. D

We now proceed to show that the relational constructors preserve ad-
missibility. To this end we shall employ the following lemma about the JJ-F

relation, which was defined in Section 3.1.

Lemma 4.10 For all i G l..n and for all contexts Cj{p} and all value
contexts Vi{^} satisfying Ci{p} JJ-F V^jp^}, there exists a p' such that for all
i G l..n, Ci{p} JJ-F Vi{p'} and furthermore, for all I G Pcof (-W'^')J letting

Ii^imm' I m E I ACi{Fi} ^* Vi{Fi,}} eVcoi(NW+\P'\)

then
def

i=l

is a cofinal subset ofNW+\P\.

Proof Since JJ-F 1S preserved under renaming of parameters we can as-
sume without loss of generality that all parameters p^ are distinct. Let
p' = p[• • • pn. The result follows by Lemma 3.20 and simple properties of
cofinal sets (it is the fact that each Vi involve a distinct subset of the param-
eters of p' that ensures that the intersection defining I' indeed is a cofinal

41

set). □

We will also make use of the following lemma to show admissibility of
the relational constructors.

Lemma 4.11 For all i G l..n, all Ci{p], and for all R\ G RadmT1 and
i?2 G RadmT2 if the following conditions are all satisfied

1. R is either RQ, R\, R\ X R2, RI + R2, or R\ -^ R2

2.VmelePcot(Nto): (Ctfift},...,Cn{F%}) e R

3. each R is strict

then
(Vi G l..n : d{Fi} 1}.) V (Vi G l..n : d{F%} ft)

Proof By contradiction using Lemma 3.22. D

Lemma 4.12 For all R\ G RadmTl and all R2 G RadmT2, R\ x R2 G

RadmnxT2-

Proof We are to show that the two conditions of admissibility hold.

Strictness Follows by Lemmas 3.5, 3.7. and 3.8.

Completeness Let I G Vcof(N^). Assume

Vmel: (C.iFl},...,Cn{F£}) G Rx x R2 (38)

By Lemma 4.11 (note that we have already argued that the strictness
condition of admissibility is satisfied) there are two cases to consider.

Case I: Vi G l..n : Cj{Fl} ft. Then the desired follows by definition
of Ri X i?2-

Case II: Vi G l..n : a{F|} #• Then Vi G l..n : 3vt : Ci{Fi} H+* «,-.
By Lemma 3.22, for all i G l..n there exists a 1^{p^} such that v% =
Vj{Fi} and C;{p} $F ^{pj. Thus by Lemma 4.10, there exists a p'
such that for all % G l..n, Cj{p} JJ-F ^{p"} and

Ii^imm' I mG/Aa{^}^^fe}}e^cof(^|P|+|P'1)

42

and
n

Ti def /'Hfp|/i6Pcof(iVlPMP

Let
I" = {m! | me/Amm'G/'}

Clearly, I" E PcofC^P'1). By (38), Lemma 3.7 and definition of I", we
have,

Vm E I" : (Vi{i^},..., Vn{F&}) E Rt x R2 (39)

By Canonical Forms Lemma, for all % € l..n, there exist V^i, V%2 such
that Vi = (Vn,Vi2), and by (39) and definition of R\ x i?2 we then
have

Vm € I" : (Fn{^},..., Kl{^}) G Äi (40)

and
Vm E J" : (F12{Fi },..., Vn2{F£}) E R2 (41)

By admissibility of R\ and (40) we then get

(Vu{F£},...,Vnl{F%})eR1 (42)

and by admisibility of R2 and (41) we get

(V12{Fi},...,Vn2{FS})£R2 (43)

Hence, by definition of Ri x R2 we then have

(V1{Fl},...,Vn{FS})eRlxR2 (44)

which together with Lemma 3.7 (and recalling that the relations are
over equivalence classes w.r.t. operational equivalence) gives that

(C1{Fl},...,Cn{FS})GR1xR2

as required.

D

Lemma 4.13 For all R\ E Radmn and all R2 G RadmT2, R\ + R2 E
RadmTl+T2.

Proof We are to show that the two conditions of admissibility hold.

43

Strictness Follows by Lemmas 3.5, 3.7. and 3.8.

Completeness Let 7 G Vcoi{N^). Assume

Vm G 7 : (C^Fl},..., Cn{F&}) G Ri + R2 (45)

By Lemma 4.11 (note that we have already argued that the strictness
condition of admissibility is satisfied) there are two cases to consider.

Case I: Vi G l..n : Ci{Fl} ff- Then the desired follows by definition
ofR1+R2.

Case II: Vi G l..n : C{{Fi} ty. Then Vi e l..n : 3^ : Ci{Fi) ^* Vi.
By Lemma 3.22, for all i G l..n there exists a V^{p*J such that «j =
Vi{Fl} and Cj{p} J|F Vi{pJ. Thus by Lemma 4.10, there exists a p'
such that for all i G l..n, C;{p} JJ-F ^{p'} and

/, = {™' | m G IAd{Fi} ^* ViiF^,}} EVcodN^+^'h (46)

and
n

7'd4ff]liGpcof(7VlPHP'l)

Let
def f -,, I" = {rti | m G 7 A mm! G 7' }

Clearly, I" G PCof(Ar|P'1). By (45), Lemma 3.7 and definition of 7", we
have,

Vm G 7" : (V^Fl},..., Vn{F£}) G R, + R2 (47)

By Canonical Forms Lemma,

Vi G l..n : ((3Vii : ^ = inlT2 Vix) V (3Fi2 : Vt = inrTl F<2))

Claim:

(Vi G l..n : 3Vn : Vi = inlT2 Fa) V (Vi G l..n : 3Vi2 : V< = inln 7i2)

Proof of Claim: By contradiction (of the assumption (45)), using
Lemma 3.7, and (46). (End of Proof of Claim)

Thus there are two subcases to consider.

SubCase I: Vi G l..n : 3V^i : V£ = inlT2 V^. Now proceed as in the
proof of Lemma 4.12, using admissibility of R\.

SubCase II: Vi G l..n : 3Vi2 : ^ = inlTl Vfo- Now proceed as in the
proof of Lemma 4.12, using admissibility of R2.

44

D

Lemma 4.14 For all R\ G RelTl and all R2 G RadmT2, R\ —*• R^ G (ri u/tu UM J12 c Jii™»tf2,

Äadm

Proof We are to show that the two conditions of admissibility hold.

Strictness Follows by Lemmas 3.5, 3.7. and 3.8.

Completeness Let I E VC0{(N^). Assume

Vm G 7: (d{i^}, • • •, C„{f&}) ERi^R2 (48)

By Lemma 4.11 (note that we have already argued that the strictness
condition of admissibility is satisfied) there are two cases to consider.

Case I: V« G l..n : Cj{Fi} f[\ Then the desired follows by definition
of R1 -^R2.

Case II: V» G l..n : Ci{F%} ty. Then Vt G l..n : 3u< : Ci{Fl} ^* vt.
By Lemma 3.22, for all i G l..n there exists a V^{p^} such that Vi =
Vi{Fi} and C,{p} 4F ^{pj. Thus by Lemma 4.10, there exists a p'
such that for all i G l..n, Cj{p} JJ-F V^{p'} and

7, = {mm'|m6/A d{F%} ^* Vi{Fi,} } G V^N®^) (49)

and

/' = n^enof(ivlPHP'i)
2 = 1

Let
I" = {m' | me/Amm'E/'}

Clearly, 7" G PcofC/V'P'1)- By (48), Lemma 3.7 and definition oil", we
have,

Vm G 7" : (Vi{Fjj,..., Fn{f£}) G 7^ - i?2 (50)

Hence by definition of R\ —*■ 7ü2

Vm G 7" : V(ei,..., e'n) G 7?2 : (V^Fl} e[,..., Vn{F%} e'n) G i?2

(51)
Let (e'x,..., e'n) G i?i be arbitrary. Then by (51) we have

Vm G 7" : (Vi{i^} e[,..., Vn{f£} ejj G i?2 (52)

45

whence by admissibility of R2, also

(V1{Fl}e'1,...,Vn{F?}e'n)ER2 (53)

Since (e[,..., e'n) was arbitrary and using Lemma 3.7 we have that

(C1{F£,...,Cn{FS})eRi--R2

as required.

D

Lemma 4.15 R\ G Radm\.

Proof We are to show that the two conditions of admissibility hold.

Strictness Follows by Lemmas 3.5, 3.7. and 3.8.

Completeness Let 7 G Vcod
N^)- Assume

Vm G 7 : (Ci{i&}, • • ■, Cn{F%}) G i?i (54)

By Lemma 4.11 (note that we have already argued that the strictness
condition of admissibility is satisfied) there are two cases to consider.

Case I: \/i G l..n : Ci{Fi} -ft-. Then the desired follows by definition
of Äjv.

Case II: Vt G l..n : Ci{F%} i}-. Then Vt G l..n : Ci{F%} ^* *. By
Lemma 3.22, for all % G l..n there exists a Vi{p{\ such that * = Vi{Fl}
and Ci{p} tyF VilPi}. Thus by Lemma 4.10, there exists a p such that
for all i G l..n, Ci{p} ^F ^{p'} and

ii = {™' I mG/ACi{Fl}^^{F4,}}GPC0f(iVlPl+lP'l) (55)

and

j'^n^GPcoKivipwp'i)
2 = 1

Let
I" = { rti I m G 7 A mm' G 7' }

Clearly, 7" G PcofC^P'1). Clearly, V* = *. Since 7" is cofinal, in
particular it is non-empty, so by (54) we have (*,...,*) G R\. Whence,
by Lemma 3.7 we have that

{C1{Fl},...,Cn{F%})eR1

as required.

46

D

Lemma 4.16 RQ 6 RadrriQ.

Proof Immediate by the definition of RQ and the fact that, for all e € Exp0,
e ff; the latter follows from progress and the fact that there are no values of
type 0 (formally, by Theorem 2.12 and Lemma 2.11). D

5 Relational Interpretation

In this section we give a relational interpretation of the types of C, that is, an
assignment of admissible relations to each type. To interpret the different
type constructors we, of course, make use of the corresponding relational
constructors defined in the previous section. Our construction follows along
the lines of Pitts [17].

Definition 5.1 For all T, define [r] : Radmp —> RadmT by induction on r
as follows.

[Op = Ro
[ip = Ri
\P\R = R
[nxrslfi = InjRxl^jR
lri + T2jR = ln}R+fo]R
ln^r2jR = ln}R^lT2jR

Note that the operation [r] is well-defined by induction on r and Lem-
mas 4.9-4.16.

Definition 5.2 Define $: Radmp —> Radmp by

MR) ^ {(ei,...,en)e(ExPp/^r I
(Vi € l..n : e$ ff) V (Vi 6 l..n : 3u; : h e, « in Uj : p A

(ui,...,«n)G[rp]Ä)}

Lemma 5.3 $ is well-defined.

Proof First note that the definition does not depend on the chosen equiv-
alence class representatives (by Lemma 3.5 and transitivity of «). Let
R € Radmp. We are to show that <E>(-R) is admissible. Use the fact that
Jrpji? is admissible and proceed as in Lemma 4.12. D

47

Lemma 5.4 (Radmop xRadm) ordered componentwise is a complete lattice.

Proof Follows by Lemma 4.9 □

Definition 5.5 For all T, define flr]' : (Relp
p x Radmp) —> RadmT by in-

duction on T as follows.

10]'(R-,R+) = Ro
{I]'(R-,R+) = Rx

M(R-,R+) = R+

IT1XT2}'(R-,R+) = lnY(R-,R+)x{T2Y(R-,R+)
ln + T2f(R-,R+) = [T1Y(R-,R^) + M(R-,H+)
lrx^T2Y(R-,R+) = ITIY(R+,R-)-*IT2]'(R-,R

+
)

Note that the operation fr]' is well-defined by induction on r and Lem-
mas 4.9-4.16. Moreover, note that the first argument to [r]' is not required
to be admissible; this will be useful in the following section.

Definition 5.6 Define \I> : (Radmop x Radmp) —> Radmp by

V(R-,R+) d^ {(ei,...,en)e(ExPpM
n I

(Vi G l..n : eii[)V (Vz G l..n : 3vi : h ej « in Uj : pA
(«i,...,t;„)e[rPl'(iE-,Ä+))}

Lemma 5.7 \I/ is well-defined.

Proof As in the proof of 5.3. D

Definition 5.8 Define ^ : (Radmop x Radmp) -» (Radmop x Radmp) as
follows.

^(R-,R+) = (■$(R+,R-),$(R-,R+))

Lemma 5.9 \[/§ is monotone.

Proof By induction on r using monotonicity properties of the relational
constructors in the obvious way. D

Definition 5.10 By Lemma 5.9 and 5.4 and Tarski's fixed point theorem,

*§ has a least fixed point lfp(tt$). Define (A~,A+) d= lfp(#$).

48

Lemma 5.11 (A , A+) satisfies the following properties

1. A-,A+ G Radrrip

2. A" = *(A+ A")

3. A+ = *(A",A+)

4. for all (R-,R+) G (Radm°p x Radmp), if <£>§{R-,R+) C (R~,R+)
then R- C A- and R+ D A+

5. A+ C A-

Proof Items 1-3 are obvious. Item 4 follows by the least fixed point prop-
erty. Item 5 follows by letting R~ = A+ and R+ = A~ in 4. D

To simplify notation, we write e : R C R' for

V(ei,...,en) eR: (eel5... ,ee„) eR'.

Note that this notation does not depend on the chosen equivalence class
representative, so the notation is indeed well-defined.

Lemma 5.12 For all i G N and for all T,

nt:Ir]'(A+,A-)c[r]'(A-,A+)

Proof By induction on (i,r) ordered lexicographically. We proceed by
cases on r.

Case T = 0: Follows immediately by |[0]'(A+, A~) - [0]'(A-, A+) =
RQ and IIQ = \x:Q.x, for all i, and Lemma 3.6.

Case T = 1: As the previous case.
Case T = p: Then [TJ'(A+ A~) = A~ and [T]'(A-,A+) = A+. As-

sume ei,...,en G A-. We are to show that (Hpei,... ,Hpen) G A+. By
admissibility of A-, in particular by the strictness condition of admissibility,
there are two cases to consider.

SubCase e^ ft, for all 1 < k < n: Then also 11^ e& ft, for all 1 < k < n,
so by admissibility of A+, the required follows.

SubCase ek JJ-, for all 1 < k < n: Then, as A~ = *(A+, A-), (ei,..., e„) =
(in wi,...,in vn) for some (v\,...,vn) G [TP](A

+
,A-) (recall that we are

working over equivalence classes). There are two subcases.
SubSubCase i = 0: Then IR e^ ft, for all 1 < k < n, by Lemma 3.46, so

by admissibility of A+, the required follows.

49

SubSubCase i > 0: Then by Lemma 3.47 (aplicable as i > 1), h Tllpe «
in (H*.-1^) : p. By induction (note that (i - l,rp) < (i,p) in the lexi-
cographic order), we get that (l4;V ,... ,l4;V) G [TP](A~,A

+
). By

admissibility there are two cases to consider.
SubSubSubCase njr1 vk ft, for all 1 < k < n: Then also n*,efc ft, for all

1 < k < n, so by admissibility of [p](A~, A+), the required follows.
SubSubSubCase W~l vk ^, for all 1 < k < n: Then Hjr1 vk = v'k, for all

1 < k < n such that (v[,... ,v'n) G [rpJ(A~,A+), whence by Lemma 3.11, h
Up ek &\nv'k: p, for all 1 < k < n, so by definition of *, (ITp ei,...Wpen) G
#(A_, A+) = A+ = Jp](A+, A-), as required.

Case T = n x r2: Then [r](A+, A") = [TI](A+, A") x [r2](A+, A")
and [rl(A-,A+) = [n](A-,A+) x |r2](A-,A+). Assume (ei,...,en) G
[r](A+,A-). We are to show that (II«. ex,... ,11». e„) G [r](A-,A+). By
admissibility there are two cases to consider.

SubCase ek ft, for all 1 < k < n: Easy.
SubCase ek J|, for all 1 < k < n: Then by definition of |n](A+, A-) x

[r2](A+,A-), efe = {v'k,v'k'), for all 1 < k < n, (v[,... ,v'n) G [TI](A+ A"),
and «, ...,<) G [r2](A+, A"). By Lemma 3.43, h n«. ek « (irn «£, ,)irn <
TI x r2, for all 1 < A; < n. By induction on (i, TI), (^,..., v'n) G [ri](A , A+).
By induction on (i,r2), («",...,«") G |r2](A~,A+). By admissibility of
|ri](A_, A+) and [T2](A~, A+), there are three subcases to consider.

SubSubCase WT1 v'k ft, for all 1 < k < n: Easy using Lemma 3.43.
SubSubCase WT2 v'k' ft, for all 1 < k < n: Easy using Lemma 3.43.
SubSubCase h II^ v'k « vk> : ri for some (vy,..., vn>) G [TI](A~, A+)

and h 11^^' « vfc» : r2 for some (vy> ,...,vn») G |T2](A
_
, A+): By

Lemma 3.9, h 11^ ek fa {vk>,vkn) : T\ x T2, so by defmtion of [TIJ(A~, A+) x
|r2](A~, A+), the required follows.

Case T = T\ + r2: Similar to the case for r = T\ X T2, using Lemmas 3.44
and 3.10.

Case T = TX-+ r2: Then [rl(A+, A") = [nKA", A+) - [^](A+, A")
and [r](A-,A+) = [r1](A+,A-) - |r2](A-,A+). Assume (eu...,en) G
[T](A+,A-). We are to show that (n*.ei,...,IPTe„) G [T](A-,A+). By
admissibility there are two cases to consider.

SubCase ek ft, for all 1 < k < n: Easy.
SubCase ek JJ-, for all 1 < k < n: Then (ei,...,e„) = (vi,...,vn) for

some (vi,... ,vn) G |r](A+, A~). By definition of —>■ we thus have

(e'1,...,e^)G[r1](A-,A+)=>(Wie'1,...,«ne;)G[r2](A
+,A-) (56)

50

By Lemma 3.45, for all 1 < k < n,

h nt e* « Aa::ri.nj, (vk (IIj, x)) : n - r2

Assume (e'l5..., e'n) G [TI](A
+
, A-). By definition of -s- it then suffices to

show that

(Xx:n.K2 (Vl (n
J

Tl x)) (ei),..., Axm.14 («n (nj, a)) (ejj) G [r2](A-, A+)

By admissibility there are two subcases.
SubSubCase e'k -ft-, for all 1 < k < n: Easy.
SubSubCase e'k JJ-, for all 1 < k < n: Then (e[,...,e'n) = (v[,..., v'n) for

some «,..., v'n) G [ri](A+, A-). Then, for all 1 < k < n,

h Axin-nj, (ÜJb (nj, x)) (e'fe) « K2 (vk (nj, «£)) : T2

By induction on (t, n), (11^ uj,..., 11^ <) € [n](A-, A+). Hence, by (56),

(Vl (I4 «!),..., Vn (I4 <)) G [r2](A+, A")

By admissibility there are two cases to consider.
SubSubCase vk 11^ vjj. f|~, for all 1 < & < n: Easy.
SubSubCase vk WTl v'k ^, for all 1 < k < n: Then (vi WTl v[,...,vn WT1 v'n) =

«,...,O for some (<, ...,<) G [r2](A
+, A"). Then, for all 1 < k < n,

r- WT2 (vk (II*, t£)) « I42 < : r2 and by induction on (i, r2), (IT;2 <,..., Ilj, <) £
[r2|(A , A+). Hence by admissibility of [r2](A , A+) and transitivity of «,
the required follows. D

Lemma 5.13 For all i 6 N, -K{ : A" C A+.

Proof By induction on i.
Basis (i = 0): Assume (ei,..., e„) G A-. By Lemma 3.46 and since

h 7T° SO n° : p -^ p, 7T° e& ff, for all 1 < fc < n. Hence, by admissibility of
A+, (7T° ei,..., 7T° en) € A+, as required.

Inductive Step: We assume it holds for i and show for i + 1. Assume
(ei,..., e„) G A~. By admissibility of A~ there are two cases to consider.

Sub Case ek -ft, for all 1 < k < n: Easy.
SubCase (ei,...,e„) = (in vi,...,\n vn) for some {v1,... ,vn) G [TP]](A

+
, A-):

By Lemma 3.47 (applicable as i + 1 > 1), h np
+1 e^ ~ in (n^. vk) : p, for

all 1 < A; < n. By Lemma 5.12, (II^ui,...,^^) e [TJ(A-,A+). By
admissibility of |rp](A

_, A+), there are two subcases to consider.

51

SubSubCase U\. vk ff, for all 1 < k < n: Easy using Lemma 3.5.
SubSubCase (n^ vu ..., WTp vn) = {v[, ...,v'n) for some (^,..., v'n) G

[TP](A~, A+): Then by transitivity and Lemma 3.7, h ITJ+1 ejt « in ^ : p,
for all 1 < ife < n, so by definition of* (W+1 eu..., IIJ+1 en) G *(A", A+) =
A+, as required. D

Lemma 5.14

7r°° : A" C A+

Proof Let (ei,...,en) G A". We are to show that (7r°°ei,... ,7r°°en) G
A+. By admissibility of A+ (Lemma 5.11, item 1), with I = N in the def-
inition of admissibility, it suffices to show Vi G TV : (ir1 ei,..., 7r2 en) G A+.
But this follows from Lemma 5.13. □

Lemma 5.15

A" c A+

Proof By Lemma 5.14, Theorem 3.70 and the fact that admissible relations
are over equivalence classes w.r.t. operational equivalence. 0

Lemma 5.16

A" = A+

Proof By Lemmas 5.11 and 5.15. □

Definition 5.17

A =f A+

Definition 5.18 For all T define RT
d= [T|A+.

This completes the construction of relations RT for all r.

We now aim to show "The Fundamental Theorem of Logical Relations"
which states that the relational interpretation of types is sound in the sense
that well-typed terms are related to themselves by the relation associated
to their type. To this end we first extend the interpretation of types as
relations to type environments.

52

Definition 5.19 For all type environments F,

Rr = {(ji, ■■■,7n) |
(\/i E l..n : ji is an expression substitution for T) A
(Vx G Dom(r) : (7l(x),... ,ln{x)) e Rr{x)) }

Theorem 5.20 IfT \- e : r and (71,... ,7^) E Rr, then (71(e),... ,7n(e)) E
RT.

Proof (Sketch) By induction on T \- e : r. In the case for T-FIX, by
admissibility of the relations Rr, for all r, it suffices to show, for all i E N,

(fix fix-.n).^),... ,fix r(x:Ti).7n(e)) E R Tl-^T2

but this is easy to show by an inner induction on i using the outer induction
hypothesis. D

6 Logical Equivalence

In this section we shall be concerned with binary relations (i.e., n = 2) as
constructed in the previous section. The relations can be used to define a
notion of logical equivalence as follows.

Definition 6.1 (Logical Equivalence) For all e,e' E ExpT we define h
e RT e' if and only if (e, e') E i?T-

(Recall that e and e' denote the equivalence classes, wrt. operational equiv-
alence, of e and e' respectively in the expression (e, e') € Rr.)

Theorem 6.2 If \- e m e' : T then h e RT e'.

Proof By Theorem 5.20. D

Theorem 6.3 // \- e RT e' then \- e « e' : r.

Proof Suppose h e RT e'. Let E{-T} E ECtxi be arbitrary. Further let
r = {x !->■ r} and let eo = E{x}, 7 = {x >-)• e}, and j' = {x ^ e'}. Then
we have that T h e : 1 and (7,7') E Rr- Thus by Theorem 5.20, we get that
(7(eo),7'(eo)) € R\. Thus (E{e},E{e'}) E R\, so by definition of R\, we

e : r, have that -E?{e} ss i£{e'}. Hence as £^ was arbitrary, we have h e
as required. D

53

Definition 6.4 (Open Logical Equivalence) For all e and e', ifT\- e:
T and r h e' : T, then we define T h e Rr e' if and only if for all value
substitutions 7 and 7' for T satisfying (7,7') G Rr, r- 7(e) Rr l'(e')-

Theorem 6.5 F \- e & e' : T if and only ifY\-eRTe'.

Proof Suppose T \- e RT e' and let 7 and 7' be value substitutions sat-
isfying (7,7') G Ry. Then Vx G Dom(r) : h 7(2;) i?r(a;) 7'(x). Hence by
Theorem 6.3, Vx G Dom(r) : h 7(3;) « 7'(a;) : T(a;). Thus from our assump-
tion we get that h 7(e) « 7'(e') : r so by Theorem 6.2, h 7(e) i?r V(e'), as
required.

For the other direction, suppose that F\- e RT e'. Let 7 and 7' be value
substitutions such that Vx G Dom(r) : h 7(2;) w 7'(a;) : T(x). Then by The-
orem 6.2, we have that Vx G Dom(r) : h 7(2;) i?r(a;) 7'(aj). Thus from our

11 „i\ : r assumption we get that H 7(e) Rr y'{e') so Theorem 6.3, h 7(e) « 7 (e;

as required. D

In summary, what we have so far is that contextual equivalence is equiv-
alent to open experimental equivalence which is again equivalent by to open
logical equivalence. In symbols

h e ssc e' : r <=$■ T h e « e' : T Corollary 3.35
T I- e i?T e' Theorem 6.5.

Hence we may use logical equivalence to prove experimental and con-
textual equivalence. This is especially useful, as we shall now show, since
we can derive a useful coinduction principle for establishing logical equiva-
lence. One can also derive an induction principle but we shall not go into
that here. These principle are derived in a manner analogously to the way
in which Pitts [17] derives such principles. For reasons of space, we shall
be less formal in our presentation of these reasoning principles than we are
elsewhere.

Theorem 6.6 For all R~ G Relp and for all R+ G Radmp, the following
inference rule is valid:

out : R- C jrPY(R+, R-) in : jr,,]'(IT, R+) C R+
R- C A C R+

Remark 6.7 Note that R" is not required to be admissible. (If R~ was
required to be admissible then the theorem would essentially just be a re-
statement of Lemma 5.11, item 4-)

54

Proof The idea of the proof is to show that, under the given assumptions,
7r°° : R~ C A and 7r°° : A C R+ and then use the syntactical minimal
invariance to get the conclusion. Since A (as shown earlier) and R+ (by as-
sumption) are both admissible, we can show this by showing it for the finite
unrollings of 7r°°, as in the proof of Lemma 5.14. For the finite unrollings of
7r°°, one proceeds as in the proofs of Lemmas 5.12 and 5.13. D

We now show how to specialize Theorem 6.6 to a coinduction principle
and give some examples of how to use it. More examples of the kind found
in [16] may also be treated this way.

Theorem 6.8 (Coinduction Principle) For all R £ Relp, if\n : [TPJ'(R,A) C
A, then the following inference rule is valid:

out :RC[TP]'(A,R)

RCA

Remark 6.9 Note that R is not required to be admissible.

Proof By Theorem6.6, letting R~ = R and R+ = A and using that
[TP]'(R,A) = A. a

Example For the purpose of this example, we shall assume that we have
another ground type N and that TP = 1 + TV x p, such that p is intuitively
the type of lists of natural numbers. Moreover, assume RN is the obvious
equality relation on the type N (essentially defined analogously to R\).
Then [rp]'(i?, A) = Ri + Rp? x A, for any R, and thus, by definition of
A, in : \TP}'{R, A) = Ri + RN x A C A. Hence, for any R € Relp, we have
that the following inference rule is valid:

out : R C -Ri + RN x R
RCA

Unwinding the definitions, this rule says that if, whenever e Re' then either

1. out e -ft- Aout e' ff; or

2. out e !->■* inlyvx/r; * A out e' H->* inl^vxp *; or

3. out e i->-* inri (n, v) A out e' t-»* inri (n, v') Av R v';

then e R e' => e A e'.

55

Let us now further assume that the list function map is defined as usual:

map = fix map (/:N —^ N).Xx:p.
case(out x, Ay:rp.in (inl^xp *), Ay:rp.in (inrx (/ (fst y), map f (snd y))))

and that swcc is the successor function for the type of natural numbers
and that o is the functional-composition term. We want to show that
map succ (map succ e) is experimentally equivalent to map (succ o succ) e,
for all e : p. By Theorem 6.3 it suffices to show that they are logically
equivalent. To show that they are logically equivalent, we can apply our
coinduction principle. To this end we let

R z= {(map succ (map succ e), map (succ o succ)e) | r- e : p}.

One can now show that whenever e R e', then the three items above are
satisfied. Hence we can conclude that e Re' implies that e A e' so recalling
that Rp = A, we have that map succ (map succ e) is indeed logically equiv-
alent to map (succ o succ)e, for all e such that he:/). □

Example In this example, we shall again assume that we have a type of
natural numbers N. We shall consider streams of natural numbers. Streams
are implemented by means of functions, as is often the case in languages with
call-by-value semantics. Thus we shall consider the case where rp = 1 —*■
N x p. Then one can show that in : [rp]'(Ä, A) = Ri ->• RN x A C A.
Hence, for any R £ Relp, we have that the following inference rule is valid:

out : R C 1 ->■ RN x R
RCA

Unwinding the definitions, this rule says that if, whenever e Re' then either

1. out e * ft" Aout e' * f|-; or

2. out e * (->■* (n, v) A out e' * H->* (n, v') A v R v';

then e R e' => e A e'. Pitts [16] also derives a coinduction principle for
infinite streams in his theory of program equivalence based on bisimulation.
Pitts' coinduction principle corresponds closely to the one we have obtained
here by specializing the recursive type to the type of streams.

Consider the following terms:

ones = fix ones(x:l).(1, in (Xx:l.ones *))
twos — fix twos(x:l).(2, in (Arr:l.twos *))
succstr = fix succstr(s:p).Xx:l.(Xp:N x p.(succ fst p,in (succstr (snd p)))) (s *)

56

Intuitively, ones is the streams of all ones, twos is the stream of all twos,
and succstr is the successor operation on streams which applies the succes-
sor function to every element in the stream. Thus we would expect that
succstr ones is operationally equivalent to twos. We can show this using
coinduction, by considering the relation

R = {(twos, succstr ones)},

because supposing that e R e', one can see that item 2 above is satisfied.
Thus we conclude that RCA and thus that succstr ones is logically equiv-
alent (and hence operationally equivalent) to twos. D

7 Correctness of CPS Transformation

We define the cps transformation as a relation between a "source" and a
"target" language. The source language, Cp, is just the language C defined
earlier. The target language, Cp*, is the variant of C obtained by replacing
the single recursive type p by another recursive type p* obtained from p by
a transformation on types similar to that given by Meyer and Wand [12].

We let Typep denote the set of type expressions of £p, that is Type'' =
Type. The set of target type expressions, denoted Typep , is defined exactly
as Type, but with p* for p.

Below we define two type translations from Typep to Typep , one for
computations, f, and one for values, r* and extend the one for values to
type environments. Note that the case (p)* = p* is not recursive; it reads:
"the value type translation of the source type p is the target type p*."

Computations f = (r* —> 1) —> 1

Values 0* = 0
1* = 1

(P)* = P*
in x r2)* = n* x r2*
(TI + TVJ)* = n* + r2*

(n -*■ T2)* = n* -± 75

Type Environments r*(x) = (T(x))* (x £ Dom(r))

In the target language Cp* we take the recursive type p* to be isomorphic
to TP*.

57

r h x : T ~*v x (T(x) = T) (CPS-VAR)

rh*:l-»„* (CPS-ONE)

T[/ : n -^ T2][x : Ti] h e : T2 ~>c e'
- (/,^Dom(r))

T h fix f{x:T\).e : Ti -^ T2 -~>v fix f(x:T*).e
(CPS-FIX)

r I- u : r -^u u'
(CPS-VAL)

T \- v : T -^c Xk:r* —*> l.kv'

Figure 3: CPS Transformation — Part I

We shall use the same notation for both the source and target language,
but we must take care to remember to which language we are referring. Of
course, all the results obtained in previous sections for C hold analogously for
both the source and target language (for the source it is obvious as it is equal
to £, for the target, just replace p with p* and TP with TP* everywhere) and
we will freely refer to these results to reason about both the source and the
target language. When we need to distinguish between sets of expressions
of the source and the target language, we shall use the notation developed
for C but use a superscript p for the source language and a superscript
p* for the target language. For example, Exp£ denotes the set of closed
expressions of type T of the source language, whereas Exp£ denotes the set
of closed expressions of type r of the target language. Moreover, we will
abuse notation and write e «fc e', for e € Exp^ and e' € Exp^ , to mean
that e evaluates to * in Lp if and only if e' evaluates to * in Cp .

The translation relations r t~ v : T ^>V V' for values and r h e : r ~->c e'
for computations are inductively defined by the rules in Figures 3 and 4.

Lemma 7.1

1. r h e : T ~^c e' for some e' iffThe-.T.

2. //T I- v : T ~»„ v', then V* h v' : T* .

3. If T h e : r -wc e', then V* \- e' : r.

We extend the notion of experimental equivalence to evaluation contexts
as follows.

58

r h ei : ri -wc ei r h e2 : r2 ~>c e'2

T h (ei,e2) : n x T2 ~>c Afc:(ri x r2)* ->■ l.e^ (Aa;i:ri*.e2 {\X2:T2* .k{xi,x2)))
(CPS-PROD)

r h e : TI x r2 ~~>c e'
(CPS-FST)

(CPS-SND)

r h fst e : n -wc Xk-.Ti* ->■ l.e' (AO::TI* x r2*.fc (fst a;))

r h e : TI x r2 ~^c e'

T h snd e : r2 ~*c AA;:r2* ->■ l.e' (Arc:ri* x T2*.& (snd a;))

r h e : T\ ~>c e'

T h inlT2 e : ri + r2 ~~»c Afc:(ri + r2)* —*■ l.e' (A:E:TI*.A; (inlT2* x))
(CPS-INL)

T h e : T2 ~->c e'

T f- inrTl e : Ti + r2 ~~*c Aä;:(TI + r2)* —^ l.e' (Ax:r2*.A; (inrTl» x))
(CPS-INR)

V \- e\ : TI + T2 -^c e[T \- e2 : T\ -*■ r -^c e2 r h 03 : r2 -^ r ~>c e3

T h case(ei,e2,e3) : r ~*c A&:r* —*■ l.e[(\X:T* + T2*.case(x,e'2xk,e'3xk))
(CPS-CASE)

r h ei : T2 —*• r -wc e'x T h e2 : r2 -^c e'2

r f- ei e2 : r ~>c Afc:r* —*■ l.e'j (A:EI:(T2 —*■ r)*.e2 (Aa;2:r2*.a;i a:2 A;))
(CPS-APP)

T h e : p ~~»c e'

T h out e : Tp ~»c \k:Tp* —*■ l.e' (Xx:p*.k (out a;))

T h- e : Tp -wc e'

T h in e : p -wc A&:p* -*• l.e' (\X:TP*.k (in x))

Figure 4: CPS Transformation — Part II

(CPS-OUT)

(CPS-IN)

59

Definition 7.2 For all E{^T},E'{.r} G ECtxT>, we define

H £{_r} « E'{-r} : r' «=» (Ve, e' G £spT : r- e « e' : r =» h £{e} « £'{e'} : /)•

As in Section 4 we denote equivalence classes by one of their represen-
tatives.

Theorem 7.3 There exists a Type''-indexed family of relations

AC
T C ExpP /« x Exp(/«

AV
T C V< /« x Va£ /«

A* C £Cfo£ /« x Vb^Li /-

satisfying

e A< e'

V AT «'
V A« «'
V AS «'

V Av «'

V AU
«'

V A? _^T2 «'

E{.T} A* u' =► £{e} ?zk e'

v = *,i/ = *
newer
h u K in Wi : /), h v' ~ in v[: p*, V\ A* ux

h v « («i, «2) : Ti x r2, ht/» K, v'2) : n* x r2*,
Vl A"n v[, v2 A%2 v'2

(ht)« inlT2 «i : ri + r2, hv'« inlT2* «i : n* + r2*, t>i A^ vj)
V (hi)» inrTl vi : ri + r2, h«'« inrTl» i>i : rx* + r2% ux A^2 «i)
=» vi A^ v'x 4ti«i A£2 v' v[

E{.T} A
k

T v' «=4> vx A
V

T v[=► £{>i} «fc «' «i,

and

(V* G AT : fix f (x^.e A^T2 fix /i(i:Ti').e') => fix /(z:n).e A^T2 fix f {x-.n*).e'.

(Note that the conditions satisfied by the relations are all independent of the
choice of equivalence class representative and are thus well-defined condi-
tions.)

The proof of this theorem will be postponed until Section 7.1. Now we
shall first see how to use the relations that exists by the theorem to prove
the correctness of the cps transformation.

60

Definition 7.4 Let A£, A", and A^ be relations as in Theorem 7.3. We
then define a source type environment indexed family of relations, Ar, re-
lating source value substitutions for V modulo experimental equivalence1 to
target value substitutions for T* modulo experimental equivalence as follows:

7 Ar 7' <^=» Vx e Dom(r) : j(x) Ar(x) 7'(z).

Theorem 7.5

1. If V h v : T ~>v v' and 7 Ar i, then j(v) AV
T i{v').

2. IfThe:T^ce' and 7 Ar 7', then 7(e) AC
T V(e').

Proof By simultaneous induction on T h v : T ^, v' and T h e : r ~~»c e'. D

Corollary 7.6 (Correctness of cps transformation) If \- e : 1 ~~>c
e'>

then e' wfe e(Aa;:l.a;).

7.1 Construction of Relations for CPS Correctness

In this section we prove Theorem 7.3. This amounts to constructing rela-
tions satisfying the conditions in Theorem 7.3. The idea is to proceed as in
Sections 4 and 5 but, of course, with a different universe of relations and
with different relational constructors.

We define a source type indexed family of universes of relations as follows.

Definition 7.7 For all source types T, we define a universe of relations

RelT
d= V ((Expp

T /«) x {Expfc /»)) .

We use R to range over RelT.

Notation 7.8 When I E Vcof(N
k+l) we write "mm! "for "(ii,..., ik,ik+i, • • • > h+i) €

I and rfi = (ii,...,ik) and m! = (ik+i, ■ ■ ■ ,ik+l)-"

As in Section 4, we shall also use a notion admissibility.

Definition 7.9 A relation R £ RelT is admissible if and only if it satisfies
both of the following conditions.

1Recall the definition of experimental equivalence for substitutions, Definition 3.26.

61

Strictness: (e, e') G R iff (e ft Ae' ft) V (3v, »':e4*»Ae'^D'A (v, v) G

Ä).

Completeness: For aH C{p} G Cta£ mf/i a// parameters in p of type T\ —^

T2, /or a// C'{q} G Cfcr£* wii/i a// parameters in q of type (T\ —^ T2)*,
/or a// Fw = fix /(z:ri).e G Expp

Tl^T2, for all F^ = fix /(x:Ti*).e' G

(Vmm' G / G Pcoi(N^+^) : (C{FÄ},C'{FÄ,}) G i?) =»

{(C{FU},C'{F^})ER)).

Definition 7.10 For all source types T, we define a universe of admissible

relations Radmr as follows.

RadmT — {R G RelT \ R is admissible}

We also use R to range over RadmT.

We now define a series of relational type constructors, just as in Section 4.
In each case, one has to check that the definitions we give are independent
of the chosen equivalence class representative; this is straightforward in all
cases (it is just like in Section 4).

Definition 7.11

R0 = { (e, e') G (Expp
0 /») x (Exp(/») | e ft A e' ft }

Definition 7.12

Rx
dM { (e, e') e (Expp /«) x (Exp(/«) | (e ft Ae' ft) V (e ^* * A e' H->* *) }

Definition 7.13 For all Ri G Reln and R2 G RelT2,

Rx x R2 = { (e, e') G (£< XT2 /«) x (£<*XT2 /«) |
(e ft Ae' ft)V

(3wi,V2,f'i,w2
: •" e ~ (^1)^2) : n x T2A

he'« (vi,«2)
: rl* x T2*A

(t>i,«i) GÄi A(v2,v2) GÄ2)}

62

Definition 7.14 For all R\ G RelTl and R2 G RelT2,

Rr + R2
d^ { (e, e') G (Expp

n+T2 /«) x (Expf1+T2 /«) |
(e fr Ae' fr)V
(3v, v' : he« inlT2 w : T\ + r2 A he'« inlT2* v' : n* + T2*A

(v,v') Gi?i)V
(3u, v' : he« inrTl v : T\ + r2 A he'« inrT1* v' : T* + r2*A
(«,«') GÄ2)}

The following relational constructors will be used in the definition of the
relational constructor for function types.

Definition 7.15 For all R G RelT,

Ak
T (R) Hf { (£{_T}, v') G {ECtx% /«) x (VafT:^ /«) |

V(e,e') Eß:B{e}«k»V}

Definition 7.16 For all R G iteZr,

A« (R) ~ { (e, e') G (Extf /«) x (ßcpf /«) |
(e ft" Ae' f|-)V
(3u, v' : h e « v : r A h e' « i/ : rA

V(Eo{_T},^) GA* (i?) : £0M «fc «'«&) }

Definition 7.17 For all Ri G RelTl and R2 G RelT2,

(e ft Ae' fr)V
(3u, v' : h e « w : T\ —»■ T2 A h e' « v' : T* —*■ T^A

V(ei,ei)Gfii:(«el!W'ei)GA^(Ä2)}

Note that Ü4 —^ i?2 is antimonotone in i?i and monotone in R2.
By proofs exactly analogous to the proofs in Section 4 of the correspond-

ing results, one can now show that (RadmT, C) is a complete lattice, for all
source types r; a lemma corresponding to Lemma 4.11 holds; RQ and R\ are
admissible; and x and + both preserve admissibility. We now show that

—*• preserve admissibility:

Lemma 7.18 For all Ri G RelTl and all R2 G RadmT2, Ri —>■ R2 G
Radm7 "Tl-^T2-

63

Proof The strictness condition is straightforward (as in the proof of Lemma 4.14).
For completeness, assume

\tfhm' e I e 7>Cof(ArlPl+lql): (CiF^C'iF^,}) e R. (57)

By the lemma corresponding to Lemma 4.11 there are two cases to consider.
Case I: C{FU} ft AC'{F^} ft Easy.
Case II: C{FUJ) ^* v and C'{F^} (->■* v'. By two applications of

Lemma 3.22, there exist V{p[} and F'{dfi} such that

v = V{FU} C{p} i^F V{p[}

v> = V{Fi] C'{q} %? v"{ql}

so

l[=f {mm' | mn G I A C{Ffh} ^* V{FM} } G V^N^^)

and

J2
d=lf { nn" | mn G I A C'{Fn} ^* V{Fff} } G Vcof{N^+^).

Thus
I" d= {rh'n' | mm! G I[Ann! G I2 Arhn G I}

is cofinal, i.e., I" G PcofC^P'il+lq'il). By (57), Lemma 3.7, and definition of

'"'
Vrh'n" G I" : (V{FM}, V'{Fn,}) G R, - Ä2.

Hence, by definition of —>■ ,

Vrtin' E I" : V(e,e') G i?i : (V{F^}e,V{F^}e') eAc
T2 (R2).

Let rh'n' G J" and (e, e') G i?i be arbitrary. By definition of A%2 (#2) we
then have that

V(E0{„T2},v'0) eAk
T2 (R2) : ^{^{^}e} ** ^l^i (58)

We are to show that

\/(E0{-T2},v'0) eAk
T2 (R2) : E0{V{Fu}e} «fe F'K}e'^. (59)

Let (E0{-T2},v'0) eAk
2 (R2) be arbitrary. Suppose E0{V{FÜJ}e} ^* *. Let

Cii{pl} = ^o{V{pl}e}. Then by Lemma 3.22,

Cu{p[} $F *■

64

Hence
In = { m'n' \ m'n' El A Cn{FA,} ^* * }

is cofinal, thus non-empty. So there exists m'n' E / such that Cn{Fw} \-t*
, i.e. E0{V{F^}e} ^ *. Hence, by (57), V {F'H,} e'v'Q ^* *, from which
V'{F^}e'v'0 !->■* * follows by Lemma 3.23. The other direction is similar,
completing the proof of (59). Thus we conclude that (C {F^}, C {F^}) E
Ri —^ R.2, as required, since (e, e') and (Eo{-T2},v'0)

were arbitrary and us-
ing Lemma 3.7. D

For all source types r E Typep we define an interpretation [r]' exactly
as in Definition 5.5.

Definition 7.19 Define * : (Radm°p x Radmp) —> Radmp by

(R-,R+) d^f {(e,e>) E (ExpP/) x (Expfc /«) |
(e ft Ae' f)V
(3t>,«' : h e » in v : p A h e' « in u' : p* A (u,«') <E [rPl'(i2

_, i?+)) }

Just like in Section 5 it is now easy to show that \& is well-defined.
We define \I>§ : (Radm°p x Radmp) —»■ (Radm°p x Radmp) and as in

Section 5 we get that \I>§ is well-defined and monotone, so that we can
define (A-, A+) as the least fixed point of \I/§. Moreover, Lemma 5.11 holds
also now.

We write (e, e') : R C R' for V(ei, e'J e -R : (e ei, e' e\) E R'.

Lemma 7.20 For all i E N, for all r E Typep,

(H^,Hf/) : [r]'(A+, A") C [r]'(A-, A+).

Proof By induction on (i,r), ordered lexicographically. All the cases are
as in the proof of Lemma 5.12, except the case for T = T\ —^ T2, which we
now consider. Then

[r]'(A+, A") = [n]'(A-, A+) - Ir2]'(A
+,A-)

and
[r]'(A-, A+) = [r1]'(A+, A") - IT2]'(A", A+).

Assume
(e,e')e[rl'(A+,A-).

65

We are to show that

(n^r2e,nf^we')e[r]'(A-,A+).

By admissibility there are two cases to consider.
SubCase e ft Ae' ft: Easy.
SubCase h e « t; : r A h e' « v' : T* for some (v,?/) G [r]'(A+, A-):

By definition of -^ , we thus have

(ei.ei) e [n]'(A-,A+) =* (vel,v'e'1) eA% ([T2]'(A+,A")) (60)

By two applications of Lemma 3.47 we get that

H n£LT2 e « Aa;:ri.n^ (« (IT^x)) : n -* 75

and
h <LW e' « AzinMI^ («' (<f z)) : n* - 75.

Assume
(e1,e

/
1)€[r1]'(A+ A").

It then suffices to show that

[\x:n.U^ (v (n?f x)) euXx-.n*^ («' (<;*■ *)) e'x) €A^2 ([r2]'(A-, A+)).

By admissibility there are two subcases to consider.
SubSubCase e\ ft Ae[ft: Easy.
SubSubCase h ei « «i : n A h e^ « v[: ri* for some {v\,v[) £

[nl'(A+,A-): Then

h \x:nJI% (v (UPf x)) ei « n^ (« (n# wi)) : r2

and
h Ax:rx*.n^ (v' (11*7 *)) ei « Dg'* (t/ (<f «i)) : n-

By induction,

(n^«1,<iit;i)e[n]'(A-,A+).

Hence, by (60),

(vU^vl,v'U^iv[) EAC
T2 ([r2]'(A+,A-)).

By admissibility there are two cases to consider.
SubSubSubCase v n?f vx ft Av' n£V v[ft: Easy

66

SubSubSubCase h vH^ v\ « i^ : r2 A H t;'Il£ J* Vj « i>2 : T2 for some
(v2,v'2) eA£2 ([T2]'(A

+
, A-)): Then it suffices to show that

(n?>2,ng^2)GA^2([r2]'(A-,A+)).

To this end, assume

(E10{.T2},vw) SA*2 ([r2l'(A-,A+)). (61)

We are to show that

E10{U^v2}^
kn^iv'2vw.

Since
r- Il£* ^ «10 ~ v'2 (\X':T2*.V10 (<f x')) : n

it suffices to show

E10{U^v2} «
fc v'2 (Xx':r2*.v10 (n&V)).

Hence it suffices to show that

{Ew{IiPT^2},\x':r2\vlQ{Iip;jx')) €A*2 (Ir2J'(A+, A")).

(because then the above follows since (w2,v2)
e^r2 (IT2j'(A+, A~))). To

this end, assume
(en,e'ii)e[T2]'(A+,A-). (62)

We are to show that

E10{n
PTten}~k(^'--r2*.vio(np

Tl?x'))e'u.

Since
h (Xx':r2*.v10 (Uf/ x')) e'n « vio «Y e'n) : 1

it suffices to show

£10{n^en}^o(<;Vn). (63)

But by induction on (62),

(n^eil,<Vei1)G[r2l'(A-,A+),

so by assumption (61), the required (63) follows. D

67

Lemma 7.21 For all i e N, (ir™, np*'*) : A" C A+.

Proof As the proof of Lemma 5.13. □

Lemma 7.22

(TT"'
00

,^*'
00

): A" CA+

Proof As the proof of Lemma 5.14. D

def
As in Section 5, it now follows that A" = A+ and we can define A =

A+.

Definition 7.23 For all source types r £ Typep
; we define

A^f[r]'(A,A).

Definition 7.24 For all source types T € Type'', we define

AV
T = {(e,e')eAe

T\ e^Ae'^}

Ak def ^E{_r}y)G(ECK/^)x(Val^1M \ (v^v'^eA^Eivj^v'v}

AC
T H

f { (e, e') € (ExpP /«) x (Exp£ /») | (£{_,}, v') €A*=J- £{e} «* e' v' }

Lemma 7.25 The above defined relations satisfy the conditions in Theo-
rem 7.3.

Proof All the conditions, except the one for Av
Tl^T2 and the completeness

condition, are obvious from the above definitions. By definition of A^^^,
we have that

v A^T2 v' <=^ (ei A^ ei =► v ex A
C

T2 v' ei) ,

but it is easy to check, using the definition of A£2, that

(ei Ae
n ei =» vei A^2 i/ei) <!=}► («i A£ «!=»««! A*2 w'ui)

which gives the required. The completeness condition for A^T2 follows by
admissibility of Ae

n^T2 (using I = {(i,i) | i e N} a the cofinal set) and
the facts that fix f(x:n).e ty and fix f(x:Ti*).e' JJ-. D

This completes the construction of relations for CPS correctness.

68

8 Related Work

The construction of relations over recursive types hinges on a syntactic ver-
sion of the minimal invariant property of the solution of a domain equation.
The critical ingredient in the construction is Pitts's observation [17] that the
existence of a relational interpretation can be reduced to minimal invariance,
combined with the observation that this criterion can be stated and proved
at a purely operational level. The proof of syntactic minimal invariance is
a generalization of methods used by Mason, Smith, and Talcott [11] to a
typed language with a recursive type. In addition to the applications given
here this generalization sheds light on the need for "run-time type checks"
in Mason, Smith, and Talcott's work — they arise here as compositions of
recursive unrolling and case analysis on a disjoint union type, confirming
Scott's observation that "untyped" really means "unityped".

The two applications of relational interpretations suggested here — an-
alyzing contextual equivalence and proving correctness of the cps transfor-
mation — have been studied elsewhere using different methods. Pitts has
emphasized the importance of a characterization of contextual equivalence
for a language with streams as a bisimulation relation constructed as the
maximal fixed point of a monotone operator on relations [16]. To apply
this framework to specific examples Pitts relies on a lemma characterizing
contextual equivalence of values of stream type. In our setting this lemma
arises as a simple consequence of the definition of logical equivalence rela-
tion for a recursive type, as outlined in Section 6. Several authors have
considered the correctness of the cps transformation. Reynolds [20] gives a
proof for an untyped functional language by working over a domain model
given by an inverse limit construction. Meyer & Wand [12] give a somewhat
different proof for the simply typed A-calculus (without a recursive type).
The proof given in Section 7 generalizes both of these to a typed language
with a recursive type without appealing to a denotational semantics.

9 Conclusion

We have presented a method for constructing relational interpretations of
recursive types in an operational setting. The key result is the syntactic
minimal invariant property up to a suitable notion of operational equiva-
lence. With this in hand we may define relational interpretations of types
over operational equivalence classes of closed terms. Using this construc-
tion we give a relational characterization of experimental and contextual

69

equivalence and derive a coinduction principle for establishing contextual
equivalence. Taking the recursive type to be the type of infinite streams,
the coinduction principle specializes to a principle corresponding to the one
used by Pitts [16] in his theory of program equivalence based on bisimula-
tion. Using our construction we further give a relational proof of correctness
of cps conversion, generalizing Reynolds' proof to the typed setting.

The proof of correctness for the cps transformation that we give here
does not appear to extend easily to a language with control operators such
as call/cc [1, 10]. The reason is that we rely on a "uniformity" property
of the evaluation relation which states that evaluation steps are parametric
in the evaluation context — if E{e) \-¥ E{e'}, then E'{e] (->• E'{e'} — that
fails in the presence of call/cc. It is also unclear whether our proof can be
extended to a language with mutable storage. One possible approach may be
to consider a store-passing transformation in which the store is represented
by a value of a recursive type, and then to apply the methods considered
here to complete the proof of correspondence between the original program
and its cps transformation.

The treatment of cps conversion given here invites generalization to an
arbitrary syntactically-definable monad for the language. Filinski's disser-
tation [3] is a first step towards a general theory of representation of compu-
tational effects. Filinski's work suggests that one could give a fairly general
correctness proof along the lines suggested here for a wide variety of defin-
able effects.

Acknowledgements

We are grateful to John Mitchell and Andy Pitts for many useful discussions
and for their suggestions on this paper. We also thank Martin Abadi, Furio
Honsell and Soren Lassen for their helpful comments. The work described
here was carried out in part at the Isaac Newton Institute for Mathematical
Sciences of Cambridge University in the autumn of 1995. We are grateful
to the Newton Institute and the organizers of the program on Semantics of
Computation for their support.

Robert Harper is supported by the National Science Foundation under
Grant No. CCR-95-2674. Lars Birkedal is supported in part by the Danish
National Research Council and in part by the National Science Foundation
under Grant No. CCR-9409997.

70

References

[1] William Clinger and Jonathan Rees. Revised4 report on the algorithmic
language Scheme. LISP Pointers, IV(3):l-55, July-Sep. 1991.

[2] B. A. Davey and H. A. Priestley. Introduction to Lattices and Order.
Cambridge University Press, 1990.

[3] Andrzej Filinski. Controlling Effects. CMU-CS-96-119, School of Com-
puter Science, Carnegie Mellon University, May 1996.

[4] Michael J. Fischer. Lambda-calculus schemata. LISP and Symbolic
Computation, 6(3/4):259-288, November 1993.

[5] Peter Freyd. Algebraically complete categories. In A. Carboni, M. C.
Pedicchio, and G. Rosolini, editors, Category Theory. Proceedings,
Como 1990, volume 1488 of Lecture Notes in Mathematics, pages 95-
104. Springer-Verlag, 1990.

[6] Peter Freyd. Recursive types reduced to inductive types. In Proceedings
of the fifth IEEE Conference on Logic in Computer Science, pages 498-
507, 1990.

[7] Peter Freyd. Remarks on algebraically compact categories. In M. P.
Fourman, P.T. Johnstone, and A. M. Pitts, editors, Applications of
Categories in Computer Science. Proceedings of the LMS Symposium,
Durham 1991, volume 177 of London Mathematical Society Lecture
Note Series, pages 95-106. Cambridge University Press, 1991.

[8] Jean-Yves Girard. Interpretation Fonctionnelle et Elimination des
Coupures dans I'Arithmetique d'Ordre Superieure. PhD thesis, Uni-
versite Paris VII, 1972.

[9] Carl A. Gunter. Semantics of Programming Languages. Structures and
Techniques. MIT Press, 1992.

[10] Robert Harper, Bruce Duba, and David MacQueen. Typing first-class
continuations in ML. Journal of Functional Programming, 3(4):465-
484, October 1993.

[11] Ian A. Mason, Scott F. Smith, and Carolyn L. Talcott. From oper-
ational semantics to domain theory. Information and Computation,
1995. To Appear.

71

[12] Albert R. Meyer and Mitchell Wand. Continuation semantics in typed
lambda calculi (summary). In Rohit Parikh, editor, Logics of Pro-
grams, volume 193 of Lecture Notes in Computer Science, pages 219—
224. Springer-Verlag, 1985.

[13] Robin Milner, Mads Tofte, and Robert Harper. The Definition of Stan-
dard ML. MIT Press, 1990.

[14] John C. Mitchell. Type systems for programming languages. In J. van
Leeuwen, editor, Handbook of Theoretical Computer Science, Vol. B,
Formal Models and Semantics, chapter 8, pages 366-458. Elsevier Sci-
ence Publishers B.V., 1990.

[15] John C. Mitchell. Foundations for Programming Languages. Founda-
tions of Computing. MIT Press, 1996.

[16] Andrew M. Pitts. Operationally-based theories of program equivalence.
In In Proc. of Summer School on Semantics and Logics of Computation.
ESPRIT CLiCS-II. University of Cambridge. Isaac Newton Institute for
Mathematical Sciences., September 1995.

[17] Andrew M. Pitts. Relational properties of domains. Information and
Computation, 127(2):66-90, June 1996.

[18] Gordon Plotkin. Call-by-name, call-by-value, and the lambda calculus.
Theoretical Computer Science, 1:125-159, 1975.

[19] Gordon Plotkin. Domains. Department of Computer Science. Univer-
sity of Edinburgh, 1983.

[20] John C. Reynolds. On the relation between direct and continuation
semantics. In J. Loeckx, editor, Proceedings of the Second Colloquium
on Automata, Languages and Programming, Saarbrücken, volume 174
of Lecture Notes in Computer Science, pages 141-156. Springer-Verlag,
1974.

72

